• Title/Summary/Keyword: shear wall

Search Result 1,481, Processing Time 0.024 seconds

Wall Shear Stress and Pressure Distributions of Developing Turbulent Oscillatory Flows in an Oscillator Connected to Curved Duct (가진 펌프에 연결된 곡관덕트에서 난류진동유동의 전단응력분포와 압력분포)

  • Sohn, Hyun-Chull;Lee, Hong-Gu;Lee, Haeng-Nam;Park, Gil-Moon
    • The KSFM Journal of Fluid Machinery
    • /
    • v.4 no.4 s.13
    • /
    • pp.37-42
    • /
    • 2001
  • In the present study, flow characteristics of turbulent oscillatory flow in an oscillator connected to square-sectional $180^{\circ}$ curved duct are investigated experimentally. In order to investigate wall shear stress and pressure distributions, the experimental studies for air flows we conducted in a square-sectional $180^{\circ}$ curved duct by using the LDV system with the data acquisitions and the processing system. The wall shear stress at bend angle of the $150^{\circ}$ and pressure distribution of the inlet (${\phi}=0^{\circ}$) to the outlet (${\phi}=180^{\circ}$) by $10^{\circ}$ intervals of the duct are measured. The results obtained from the experiment are summarized as follows : wall shear stress values in the inner wall we larger than those in an outer wall, except for the phase angle (${\omega}t/{\pi}/6$) of 3, because of the intensity of secondary flow. The pressure distributions are the largest in accelerating and decelerating regions at the bend angle(${\phi}$) of $90^{\circ}$ and pressure difference of inner and outer walls is the largest before and after the ${\phi}=90^{\circ}$.

  • PDF

Numerical Analysis on the Effect of Wall Shear Stress Around the Ring Drug-Eluting Stent (고리형 약물분출 스텐트 주위 벽전단응력의 영향에 대한 수치해석)

  • Seo, Tae-Won;Barakat, Abdul
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.1 s.256
    • /
    • pp.21-28
    • /
    • 2007
  • The use of drug-eluting stents has dramatically reduced the incidence of restenosis however, much remains to be teamed about the performance of these stouts. In the present study, we tested the hypothesis that the design of drug-eluting stents influences the efficacy of local drug delivery to the arterial wall and that this effect depends on both arterial geometry and the prevailing flow conditions. We performed computational simulations in which the coupled Navier-Stokes and advection-diffusion equations were solved to determine the flow field and drug concentration in the vicinity of model drug-eluting stouts It is found that the characteristics of flow phenomena can be influenced greatly by the ratio of stent diameter to vessel diameter. The presence of drug-eluting stent may have profound effect on wall shear stresses, recirculation sizes and drug distributions. The results show that recirculation zone is influenced by the imposed flow conditions and stent diameter. In pulsatile flow, the low wall shear stress and high drug concentration occur along the arterial wall during the decelerating flow conditions. These results could provide the guideline for future drug-eluting stent designs toward reducing restenosis by affecting local wall shear stress distributions associated with neointimal hyperplasia.

Seismic Performance of Steel Coupling Beam and RC Shear Wall under Lateral Cyclic Load (주기하중 하에서 철근 콘크리트 전단벽체와 철골 연결보 접합부의 내진성능)

  • Lim, Woo-Young;Hong, Sung-Gul
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.6
    • /
    • pp.591-602
    • /
    • 2015
  • In this paper, cyclic loading test was performed to evaluate the seismic performance of the steel coupling beam and RC shear wall. The test parameter was reinforcement detail of the shear wall. For the shear wall which was designed in accordance with the current design codes, a premature bearing failure occurred at the face of the wall. On the other hand, the bearing failure of walls was prevented due to the new type of reinforcement details. Test results indicated that the vertical reinforcements were more affected to the shear strength of the coupled shear wall than the horizontal reinforcement. Based on the failure mode, concrete stress distribution above and below flanges of the embedded steel beam was proposed. Assuming proposed concrete stress distribution, load resistance was predicted and it was agree well with test data.

Seismic performance of CFS shear wall systems filled with polystyrene lightweight concrete: Experimental investigation and design methodology

  • Mohammad Rezaeian Pakizeh;Hossein Parastesh;Iman Hajirasouliha;Farhang Farahbod
    • Steel and Composite Structures
    • /
    • v.46 no.4
    • /
    • pp.497-512
    • /
    • 2023
  • Using light weight concrete as infill material in conventional cold-formed steel (CFS) shear wall systems can considerably increase their load bearing capacity, ductility, integrity and fire resistance. The compressive strength of the filler concrete is a key factor affecting the structural behaviour of the composite wall systems, and therefore, achieving maximum compressive strength in lightweight concrete while maintaining its lightweight properties is of significant importance. In this study a new type of optimum polystyrene lightweight concrete (OPLC) with high compressive strength is developed for infill material in composite CFS shear wall systems. To study the seismic behaviour of the OPLC-filled CFS shear wall systems, two full scale wall specimens are tested under cyclic loading condition. The effects of OPLC on load-bearing capacity, failure mode, ductility, energy dissipation capacity, and stiffness degradation of the walls are investigated. It is shown that the use of OPLC as infill in CFS shear walls can considerably improve their seismic performance by: (i) preventing the premature buckling of the stud members, and (ii) changing the dominant failure mode from brittle to ductile thanks to the bond-slip behaviour between OPLC and CFS studs. It is also shown that the design equations proposed by EC8 and ACI 318-14 standards overestimate the shear force capacity of OPLC-filled CFS shear wall systems by up to 80%. This shows it is necessary to propose methods with higher efficiency to predict the capacity of these systems for practical applications.

Stochastic response analysis of visco-elastic slit shear walls

  • Kwan, A.K.H.;Tian, Q.L.;Cheung, Y.K.
    • Structural Engineering and Mechanics
    • /
    • v.6 no.4
    • /
    • pp.377-394
    • /
    • 1998
  • Slit shear walls an reinforced concrete shear wall structures with purposely built-in vertical slits. If the slits are inserted with visco-elastic damping materials, the shear walls will become viscoelastic sandwich beams. When adequately designed, this kind of structures can be quite effective in resisting earthquake loads. Herein, a simple analysis method is developed for the evaluation of the stochastic responses of visco-elastic slit shear walls. In the proposed method, the stiffness and mass matrices are derived by using Rayleigh-Ritz method, and the responses of the structures are calculated by means of complex modal analysis. Apart from slit shear walls, this analysis method is also applicable to coupled shear walls and cantilevered sandwich beams. Numerical examples are presented and the results clearly show that the seismic responses of shear wall structures can be substantially reduced by incorporating vertical slits into the walls and inserting visco-elastic damping materials into the slits.

Numerical Study on Blood Flow Dynamics and Wall Mechanics in a Compliant Carotid Bifurcation Model (혈관 유연성을 고려한 경동맥 분기부 모델 혈류역학 해석)

  • Nguyen, Minh Tuan;Lee, Sang-Wook
    • Journal of the Korean Society of Visualization
    • /
    • v.13 no.2
    • /
    • pp.28-32
    • /
    • 2015
  • Blood flow simulations in an realistic carotid bifurcation model with considering wall compliance were carried out to investigate the effect of wall elasticity on the wall shear stress and wall solid stress. Canonical waveforms of flow rates and pressure in carotid arteries were imposed for boundary conditions. Compared to a rigid wall model, we found an increased recirculation region at the carotid bulb and an overall reduction of wall shear stress in a compliant model. Additionally, there was appreciable change of flow rate and pressure wave in longitudinal direction. Both solid and wall shear stress concentration occur at the bifurcation apex.

Behavior of a Heavy Particle in the Shear Flow Near a Flat Wall (벽 근처 전단 유동 내의 입자의 운동)

  • Jeong Jae-Dal;Cho Seong-Gee;Lee Chang-Hoon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.8 s.251
    • /
    • pp.806-817
    • /
    • 2006
  • The motion of a small rigid particle in the shear flow near a stationary flat wall is investigated in the context of Stokes flow. The lift force proposed by Saffman and later modified by Mclaughlin and Mei is considered in the prediction of the particle motion far away from the wall. Later, the expression of the lift force is modified to take into account the effect of wall. In the analysis, gravity, lift and drag acting on a small rigid particle near the wall are taken into account. Both analytical and numerical results for the terminal velocities, distances from the wall and trajectories of the particle are presented. In addition, we extended the present analysis to turbulent near-wall flow in the vicinity of the wall.

Load-Displacement Formulations of Low-rise Unbounded RC Shear Walls with or without Openings

  • Lou, K. Y.;Cheng, F. Y.;Sheu, M. S.;Zhang, X. Z.
    • Computational Structural Engineering : An International Journal
    • /
    • v.1 no.2
    • /
    • pp.117-130
    • /
    • 2001
  • Investigations of low-rice unbounded reinforced concrete shear walls with or without openings are performed with comparison of analytical and experimental results. Theoretical analysis is based on nonlinear finite element algorithm, which incorporates concrete failure criterion and nonlinear constitutive relationships. Studios focus on the effects of height-to-length ratio of shear walls, opening ratio, horizontal and vertical reinforcement radios, and diagonal reinforcement. Analytical solutions conform well with experimental results. Equations for cracking, yielding and ultimate loads with corresponding lateral displacements are derived by regression using analytical results and experimental data. Also, failure modes of low-rise unbounded shear walls are theoretically investigated. An explanation of change in failure mode is ascertained by comparing analytical results and ACI code equations. Shear-flexural failure can be obtained with additional flexural reinforcement to increase a wall's capacity. This concept leads to a design method of reducing flexural reinforcement in low-rise bounded solid shear wall's. Avoidance of shear failure as well as less reinforcement congestion leer these walls is expected.

  • PDF

Rheological behavior and wall slip of dilute and semidilute CPyCl/NaSal surfactant solutions

  • Kibum Sung;Han, Min-Soo;Kim, Chongyoup
    • Korea-Australia Rheology Journal
    • /
    • v.15 no.3
    • /
    • pp.151-156
    • /
    • 2003
  • In this research, experimental studies were performed to examine the rheological behavior of equimolar solutions of cetylpyridinium chloride (CPyCl) and sodium salicylate (NaSal) solutions with concentration. The surfactant solutions were prepared by dissolving 2 mM/2 mM - 80 mM/80 mM of surfactant/counterion in double-distilled water. It has been observed that the zero shear viscosity shows abrupt changes at two critical values of C^*$ and C^{**}$. These changes are caused by the switching of relaxation mechanism with concentration of CPyCl/NaSal solutions at those concentrations. The wall slip velocities of dilute and semidilute CPyCl/NaSal solutions show a dramatic increase with shear rate where the shear viscosity exhibits shear thickening behavior for dilute solutions and shear thinning behavior for semi-dilute solutions, respectively. Considering that the dramatic increase in wall slip velocity should be related to the formation of shear-induced structure (SIS) in the surfactant solution, the shear thickening behavior of semi-dilute solutions is caused by elastic instability unlike the case of dilute solutions.

Influence of ECC ductility on the diagonal tension behavior (shear capacity) of shear-wall panel (ECC (Engineered Cementitious Composite)의 연성이 전단벽의 사인장 거동에 미치는 영향)

  • Ha Gee-Joo;Shin Jong-Hack;Kim Yun Yong;Kim Jeong-Su;Kim Jin-Keun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05b
    • /
    • pp.321-324
    • /
    • 2005
  • This paper presents a preliminary study on the influence of material ductility on diagonal tension behavior of shear-wall panels. There have been a number of previous studies, which suggest that the use of high ductile material such as ECC (Engineered Cementitious Composite) significantly enhanced shear capacity of structural elements even without shear reinforcements involved. The present study emphasizes increased shear capacity of shear-wall panels by employing a unique strain-hardening ECC reinforced with poly(vinyl alcohol) (PVA) short random fibers. Normal concrete was adopted as the reference material. Experimental investigation was performed to assess the failure mode of shear-wall panels subjected to knife-edge loading. The results from experiments show that ECC panels exhibit a more ductile failure mode and higher shear capacity when compared to ordinary concrete panels. The superior ductility of ECC was clearly reflected by micro-crack development, suppressing the localized drastic fracture typically observed in concrete specimen. This enhanced structural performance indicates that the application of ECC for a in-filled frame panel can be effective in enhancing seismic resistance of an existing frame in service.

  • PDF