• Title/Summary/Keyword: shear thinning behavior

Search Result 120, Processing Time 0.027 seconds

Rheological Characteristics of Nitromethane Gel Fuel with Nano/Micro Size of SiO2 Gellant (SiO2계열 젤화제 입자크기에 따른 니트로메탄 젤 추진제의 유변학적 특성 연구)

  • Jang, Jinwu;Kim, Sijin;Han, Seongjoo;Kim, Jinkon;Moon, Heejang
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.456-461
    • /
    • 2017
  • In this study, the rheological properties of nitromethane gel propellants on nano/micron sized gelling agent are investigated. Silicon dioxide is used as the gellant with 5 wt%, 6.5 wt% and 8 wt% concentration, respectively, where the measurements are conducted under steady-state shear flow conditions using a rotational rheometer. The nitromethane/silicon dioxide gel showed non-Newtonian flow behavior for the entire experimental shear rate ranges. The gel fuels with nano-sized gellant had a slightly higher viscosity than the gel fuels with micron-sized one for low shear rate range. Additionally, it was found that Herschel-Bulkley model can hardly describe the rheological behavior of nitromethane gel propellant, but the NM model(by Teipel and Forter-Barth) is better suited to explain the rheological behavior of nitromethane gel propellant.

  • PDF

Thixotropic Properties of Polyacrylamide Hydrogels with Various Synthetic Conditions (합성조건에 따른 Polyacrylamide 수화 겔의 흐름변성 성질)

  • Kim, Nam-Jeong
    • Journal of the Korean Chemical Society
    • /
    • v.50 no.6
    • /
    • pp.447-453
    • /
    • 2006
  • of synthetic conditions and water content on rheological properties of polyacrylamide hydrogels were studied. The non-Newtonian flow curves of polyacrylamide hydrogels were obtained by using a cone-plate rheometer. The rheological parameters were obtained by applying non-Newtonian equation to the flow curves for polyacrylamide hydrogels. The polyacrylamide hydrogels are shear thinning under increasing shear rate modes which result in thixotropic behavior. These flow properties are controlled by the characteristics of flow units and the interaction among the flow segments.

Shrinkage Behaviors of Polypropylene according to Product Form in Injection Molding (사출성형에서 제품 형상에 따른 PP수지의 수축거동)

  • Choi, Youn-Sik;Han, Dong-Yeop;Jeong, Yeong-Deug
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.3 no.3
    • /
    • pp.46-51
    • /
    • 2004
  • Nowadays, plastic industry has needed to produce parts that require high precision and quality. To make a high precision and quality part, before injection molding, plastic material in investigated about their properties such as shrinkage, warpage, etc. In this study, experiments were conducted with PP(polypiopylene) to figure out shrinkage behavior according to three type aspect ratio of samples. The injection speed that affects on shear late, molecular orientation within plastic part was determined as main variable of experiment. As a result of experimental study, part shrinkage had a tendency to be decreased by increasing injection speed and aspect ratio of samples.

  • PDF

The Rheological Characteristics of Wyoming Bentonite: Role of Salinity (와이오밍 벤토나이트의 유변학적 특성: 염분농도의 역할)

  • Jeong, Sueng-Won
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.10
    • /
    • pp.81-92
    • /
    • 2011
  • The rheological properties of Wyoming bentonites are strongly influenced by the size of particles, cation exchangeable capacity, arrangement and morphology of clay mineral. This paper presents the results of rheological investigations on the Wyoming bentonites aqueous dispersions: two types of particle flocculation were considered. For the Wyoming bentonite, 0g/L and 30g/L NaCl equivalent salinity were added in fresh and salt water to examine the rheological behavior. This paper examined the general rheological characteristics, compatibility of rheological models and correlation between soil structure and change in rheological properties of Wyoming bentonite caused by increasing salinity. From flow curves of bentonites hydrated with fresh water and salt water, the observed general flow behavior is very close to shear thinning with yield stress (or ideal Bingham fluid with yield stress and plastic viscosity). However, the change of shear stress at the same shear rate is clear, particularly for lower shear rate. Well-known rheological models are used to fit the data. There is a good agreement between rheological model and data: Carreau, Herschel-Bulkley and power-law for S=0g/L and bilinear, Herschel-Bulkley and power-law for S=30g/L. It may be due to the fact that the internal structural bonding (strong modification of particle-particle interactions from edge-to-edge and/or edge-to-face to face-to-face) in soil matrix is affected from the evolution of rheological properties with different salinities.

Rheological Behavior of Sweet Potato Starch-Glucose Composites

  • Cho, Sun-A;Yoo, Byoung-Seung
    • Food Science and Biotechnology
    • /
    • v.17 no.2
    • /
    • pp.417-420
    • /
    • 2008
  • Rheological properties of sweet potato starch (SPS)-glucose composites (5%, w/w) at different concentrations (0, 10, 20, and 30%, w/w) of glucose were investigated in steady and dynamic shear. The steady shear rheological properties of SPS-glucose composites were determined from rheological parameters for power law and Casson flow models. At $25^{\circ}C$ all the samples showed a pronounced shear-thinning behaviors (n=0.29-0.37) with high Casson yield stress. In general, the presence of glucose resulted in the decrease in consistence index (K), apparent viscosity (${\eta}_{a,100}$), and yield stress (${\sigma}_{oc}$). Storage (G') and loss (G") moduli increased with an increase in frequency ($\omega$), while complex viscosity (${\eta}*$) decreased. Dynamic moduli (G', G", and ${\eta}*$) of the SPS-glucose composites at higher glucose concentrations (20 and 30%) were higher than those of the control (0% glucose) and also increased with increasing glucose concentration from 10 to 30%. The effect of glucose on steady and dynamic shear rheological properties of the SPS pastes appears to greatly depend on glucose concentration in the range of 10-30%.

Effect of addition of methanol on rheological properties of silk formic acid solution

  • Bae, Yu Jeong;Um, In Chul
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.40 no.1
    • /
    • pp.28-32
    • /
    • 2020
  • Recently, many studies have been undertaken on the wet spinning and electrospinning of silk because wet-spun fibers and electrospun webs of silk can be applied in the biomedical and cosmetic fields owing to the good biocompatibility of silk. The rheological properties of silk solution are important because they strongly affect the spinning performance of the silk solution and the structures of resultant fibrous materials. Therefore, as a preliminary study on the effect of solvent composition on the rheological properties of silk fibroin (SF) solution and structure of the resultant film, in the reported work, methanol was added to the SF formic acid solution. A small amount of methanol (i.e. 2%) added to the SF formic acid solution significantly altered the rheological properties of the solution: its shear viscosity increased by 10 folds at low shear and decreased on increasing the shear rate, demonstrating shear thinning behavior of the SF solution. Dynamic tests for the SF solution indicated that the addition of 2% methanol altered the viscous state of the SF formic acid solution to elastic. However, the molecular conformation (i.e. β-sheet conformation) of the regenerated SF film cast from formic acid remained unchanged on the addition of 2% methanol.

Morphology and Mechanical Properties of Waste PVC Blends (II)- The Relationship between Rheology and Morphology of Waste PVC/PE Blends (폐폴리(염화 비닐)계 고분자 블렌드의 구조 및 물성 연구(II)-폐폴리(염화 비닐)/폴리에틸렌 고분자 블렌드의 형태학 및 유변학적 거동)

  • 유영재;박재찬;원종찬;최길영;이재흥
    • Polymer(Korea)
    • /
    • v.28 no.6
    • /
    • pp.460-467
    • /
    • 2004
  • The polymer blends of waste poly(vinyl chloride) (RPVC) and waste polyethylene (RPE) were prepared by melt mixing. Their morphologies and rheological properties were investigated and torque changes were also measured. Comparing the torques calculated by the log additivity rule with measured torque changes, the polymer blends showed the large negative deviation behavior (NDB) due to their incompatibility. The shear viscosities of the blends decreased with increasing shear rates, showing shear thinning behavior. The shear viscosity of the blends with compatibilizer was larger than that of the blends without compatibilizer. SEM micrographs of the strands after measurement showed that the domain size of the blends was slightly enlarged with increasing the shear rate. Also, RPVC domain size was larger in the core-sections of the strands from capillary viscometer than in the surface region.

Rheological Characterization of Hydrogen Peroxide Gel Propellant

  • Jyoti, B.V.S.;Baek, Seung Wook
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.15 no.2
    • /
    • pp.199-204
    • /
    • 2014
  • An experimental investigation on the rheological behavior of gelled hydrogen peroxide at different ambient temperature (283.15, 293.15 and 303.15 K) was carried out in this study. The gel propellant was rheologically characterized using a rheometer, in the shear rate ranges of 1 to $20s^{-1}$, and 1 to $1000s^{-1}$. Hydrogen peroxide gel was found to be thixotropic in nature. The apparent viscosity value with some yield stress (in-case of shear rate 1 to $20s^{-1}$) drastically fell with the shear rate. In the case of the shear rate range of 1 to $20s^{-1}$, the apparent viscosity and yield stress of gel were significantly reduced at higher ambient temperatures. In the case of the shear rate range of 1 to $1000s^{-1}$, no significant effect of varying the ambient temperature on the gel apparent viscosity was observed. The up and down shear rate curves for hydrogen peroxide gel formed a hysteresis loop that showed no significant change with variation in temperature for both the 1 to $20s^{-1}$ and the 1 to $1000s^{-1}$ shear rate ranges. No significant change in the thixotropic index of gel was observed for different ambient temperatures, for both low and high shear rates. The gel in the 1 to $20s^{-1}$ shear rate range did not lead to a complete breakdown of gel structure, in comparison to that in the 1 to $1000s^{-1}$ shear rate range.

Effect of Guar Gum on Rheological Properties of Acorn Flour Dispersions

  • Yoo, Byoung-Seung;Shon, Kwang-Joon;Chang, Young-Sang
    • Food Science and Biotechnology
    • /
    • v.14 no.2
    • /
    • pp.233-237
    • /
    • 2005
  • Rheological properties of acorn flour-guar gum mixtures (4% w/w) at different guar gum concentrations (0, 0.2, 0.4, 0.6, and 0.8% w/w) were evaluated in steady and dynamic shear. The acorn flour-guar gum mixtures at $25^{\circ}C$ showed high shear-thinning flow behavior (n= 0.20-0.27). Consistency index (K), apparent viscosity (${\eta}_{a,100}$), and Casson yield stress (${\sigma}_{oc}$) increased with the increase in guar gum concentration. Within the temperature range of $25-70^{\circ}C$, the {\eta}_{a,100}$ of mixtures obeyed the Arrhenius relationship with high determination coefficient ($R^2=\;0.974-0.994$). Activation energy values (5.37-6.77 kJ/mole) of acorn flour dispersions in the mixtures with guar gum (0.2-0.8%) were much lower than that (12.5 kJ/mole) of acorn flour dispersion (0% guar gum). Storage modulus (G'), loss modulus (G"), and complex viscosity (${\eta}^*$) increased with the increase in guar gum concentration. Dynamic rheological data of 1n (G', G") versus ln frequency (w) of guar gum-acorn flour mixtures had positive slopes with G' greater than G" over most of the frequency range, indicating that they exhibited weak gel-like behavior.

Flow Behavior of Sweet Potato Starch in Mixed Sugar Systems

  • Cho, Sun-A;Kim, Bae-Young;Yoo, Byoung-Seung
    • Preventive Nutrition and Food Science
    • /
    • v.13 no.3
    • /
    • pp.249-252
    • /
    • 2008
  • Flow behaviors of sweet potato starch (SPS) pastes (5% w/w) were studied in the presence of various sugars (xylose, glucose, fructose and sucrose) and sugar alcohols (xylitol and sorbitol). The flow properties of SPS-sugar mixtures were determined from the rheological parameters of power law model. The vane method was also employed for determining yield stresses of SPS-sugar mixtures directly under a controlled low shear rate. At $25^{\circ}C$ all the samples showed shear-thinning behaviors ($n=0.35{\sim}0.44$) with yield stress. The consistency index (K) values of SPS-sugar mixtures increased in the following order: sorbitol> xylitol> control (no sugar)> sucrose> fructose> glucose> xylose, showing that the addition of sugar alcohols enhanced the K values. The yield stress values were reduced in the presence of ugars and sugar alcohols and they also increased with an increase in swelling power of starch granules in the SPS-sugar mixture systems.