• Title/Summary/Keyword: shear strength of joints

Search Result 428, Processing Time 0.028 seconds

A Study on Resistance Spot Welding of Dissimilar Sheet Metals(Aluminum Alloy - Steel Sheets) (이종재료(알루미늄합금-강판)의 저항 점용접에 관한 연구)

  • 손병천;우승엽;이재범;최용범;장희석
    • Journal of Welding and Joining
    • /
    • v.15 no.4
    • /
    • pp.42-62
    • /
    • 1997
  • Resistance spot welding has been widely used in the sheet metal joining processes because of its high productivity and convenience. Recently, automobile industries are trying to replace partly steel sheets with aluminum alloy sheets. Among currently produced aluminum alloys, Al alloy sheets of Al-Mg-Si(6000 series) are being tested. Especially, 6000 series are the most probable substitute in view of strength and weldability. In this paper, an attempt was made to apply resistance spot welding to joining of dissimilar sheet metals (KS6383+SCPZn or KS6383+SHCP). An effort was made to balance heating rate in the Al alloy with that in the steel sheets by increasing electrode tip diameter. Although resistance spot welding of Al alloy sheet and sheet metals does not produce desirable nugget, it proved to have reasonable strength if optimal weld condition is found by tensile-shear strength and fatigue life test. Since spot weld joints in automobile are always experiencing repeated load, spot welding methodology proposed in this paper is found to be not suitable to automobile body manufacturing.

  • PDF

Nonlinear Analysis of Large Concrete Panel Structures subjected to Cyclic Loads (반복하중을 받는 대형 콘크리트 판구조의 비선형 해석)

  • 정봉오;서수연;이원호;이리형
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1994.10a
    • /
    • pp.113-120
    • /
    • 1994
  • Large Concrete Panel Structures behave quite differently from frame or monolithic shear wall structures because of the weakness of Joint in stiffness and strength. The joint experiences large deformation such as shear-slip in vertical and horizontal joint and rocking and crushing in horizontal joint because of localized stress concentration, but the wall panels behave elastically under cyclic loads. In order to describe the nonlinear behavior of the joint in the analysis of PC structures, different analysis technique from that of RC structures is needed. In this paper, for analysis of large concrete panel subassemblage subjected to cyclic loads, the wall panels are idealized by elastic finite elements, and the joints by nonlinear spring elements with various load-deflection relationship. The analytical results are compared with the experimental results on the strength, stiffness, energy dissipation and lateral drift, and the effectiveness of this computer analysis modelling technique is checked.

  • PDF

Strengthening of non-seismically designed beam-column joints by ferrocement jackets with chamfers

  • Li, Bo;Lam, Eddie Siu-Shu;Cheng, Yuk-Kit;Wu, Bo;Wang, Ya-Yong
    • Earthquakes and Structures
    • /
    • v.8 no.5
    • /
    • pp.1017-1038
    • /
    • 2015
  • This paper presents a strengthening method that involves the use of ferrocement jackets and chamfers to relocate plastic hinge for non-seismically designed reinforced concrete exterior beam-column joints. An experimental study was conducted to assess the effectiveness of the proposed strengthening method. Four half-scale beam-column joints, including one control specimen and three strengthened specimens, were prepared and tested under quasi-static cyclic loading. Strengthening schemes include ferrocement jackets with or without skeleton reinforcements and one or two chamfers. Experimental results have indicated that the proposed strengthening method is effective to move plastic hinge from the joint to the beam and enhance seismic performance of beam-column joints. Shear stress and distortion within the joint region are also reduced significantly in strengthened specimens. Skeleton reinforcements in ferrocement provide limited improvement, except on crack control. Specimen strengthened by ferrocement jackets with one chamfer exhibits slight decrease in peak strength and energy dissipation but with increase in ductility as compared with that of two chamfers. Finally, a method for estimating moment capacity at beam-column interface for strengthened specimen is developed. The proposed method gives reasonable prediction and can ensure formation of plastic hinge at predetermined location in the beam.

Fatigue Strength Evaluation of the Clinch Joints of a Cold Rolled Steel Sheet

  • Kim, Ho-Kyung
    • International Journal of Railway
    • /
    • v.2 no.4
    • /
    • pp.131-138
    • /
    • 2009
  • Static tensile and fatigue tests were conducted using tensile-shear specimens to evaluate the fatigue strength of a SPCC sheet clinch joint. The maximum tensile strength of the specimen produced at the optimal punching force was 1750 kN. The fatigue endurance limit (=760 N) approached 43% of the maximum tensile load (=1750 N) at a load ratio of 0.1, suggesting that the fatigue limit is approximately half of the value of the maximum tensile strength. The FEM analysis showed that at the fatigue endurance limit, the maximum von-Mises stress of 373 MPa is very close to the ultimate tensile strength of the SPCC sheet (=382 MPa).

  • PDF

Progressive Failure Analysis of Adhesive Joints of Filament-Wound Composite Pressure Vessel (필라멘트 와인딩 복합재 압력용기의 접착 체결부에 대한 점진적 파손 해석)

  • Kim, Junhwan;Shin, Kwangbok;Hwang, Taekyung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.11
    • /
    • pp.1265-1272
    • /
    • 2014
  • This study performed the progressive failure analysis of adhesive joints of a composite pressure vessel with a separated dome by using a cohesive zone model. In order to determine the input parameters of a cohesive element for numerical analysis, the interlaminar fracture toughness values in modes I and II and in the mixed mode for the adhesive joints of the composite pressure vessel were obtained by a material test. All specimens were manufactured by the filament winding method. A mechanical test was performed on adhesively bonded double-lap joints to determine the shear strength of the adhesive joints and verify the reliability of the cohesive zone model for progressive failure analysis. The test results showed that the shear strength of the adhesive joints was 32MPa; the experiment and analysis results had an error of about 4.4%, indicating their relatively good agreement. The progressive failure analysis of a composite pressure vessel with an adhesively bonded dome performed using the cohesive zone model showed that only 5.8% of the total adhesive length was debonded and this debonded length did not affect the structural integrity of the vessel.

Deformability of RC Beam-Column Assembles (철근콘크리트 보-기둥 접합부의 연성능력)

  • Lee, Jung-Yoon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.193-196
    • /
    • 2008
  • This paper proposes a method to predict the ductility capacity of reinforced concrete beam-column joints failing in shear after the formations of plastic hinges at both ends of the adjacent beams. The current design code divides joints into two categories: Type 1 for structures in non seismically hazard area and Type 2 in seismically hazard area. While there are many researches related to joint shear strength in Type 1, those in regard to joint ductility capacity of Type 2 are scarce. This paper classified the ductility capacity of beam-column joints into column, joint panel, and beam deformability. Since a brittle failure such as shear or bond failure in the columns must be avoided, column deformability was calculated by elastic analysis. The plastic hinges of the adjacent beams affect joint deformability. Therefore, the prediction of joint deformability was calculated with consideration to the degradation of the diagonally compressed concrete due to the strain penetration.

  • PDF

Behavior of composite CFST beam-steel column joints

  • Eom, Soon-Sub;Vu, Quang-Viet;Choi, Ji-Hun;Papazafeiropoulos, George;Kim, Seung-Eock
    • Steel and Composite Structures
    • /
    • v.32 no.5
    • /
    • pp.583-594
    • /
    • 2019
  • In recent years, composite concrete-filled steel tubular (CFST) members have been widely utilized in framed building structures like beams, columns, and beam-columns since they have significant advantages such as reducing construction time, improving the seismic performance, and possessing high ductility, strength, and energy absorbing capacity. This paper presents a new composite joint - the composite CFST beam-column joint in which the CFST member is used as the beam. The main components of the proposed composite joint are steel H-beams, CFST beams welded with the steel H-column, and a reinforced concrete slab. The steel H-beams and CFST beams are connected with the concrete slab using shear connectors to ensure composite action between them. The structural performance of the proposed composite joint was evaluated through an experimental investigation. A three-dimensional (3D) finite element (FE) model was developed to simulate this composite joint using the ABAQUS/Explicit software, and the accuracy of the FE model was verified with the relevant experimental results. In addition, a number of parametric studies were made to examine the effects of the steel box beam thickness, concrete compressive strength, steel yield strength, and reinforcement ratio in the concrete slab on the proposed joint performance.

Fatigue Strength of Al-5052 Tensile-Shear Specimens using a SPR Joining Method (SPR 접합법을 이용한 Al-5052 인장-전단 시험편의 피로강도)

  • Lee, Man Suk;Kim, Taek Young;Kang, Se Hyung;Kim, Ho Kyung
    • Journal of the Korean Society of Safety
    • /
    • v.29 no.4
    • /
    • pp.9-14
    • /
    • 2014
  • Self-piercing riveting(SPR) is a mechanical fastening technique which is put pressure on the rivet for joining the sheets. Unlike a spot welding, SPR joining does not make the harmful gas and $CO_2$ and needs less energy consumption. In this study, static and fatigue tests were conducted using tensile-shear specimens with Al-5052 plates for evaluation of fatigue strength of the SPR joints. During SPR joining process for the specimen, using the current sheet thickness and a rivet, the optimal applied punching force was found to be 21 kN. And, the maximum static strength of the specimen produced at the optimal punching force was 3430 N. During the fatigue tests for the specimens, interface failure mode occurred on the top substrate close to the rivet head in the most high-loading range region, but on the bottom substrate close to the rivet tail in the low -loading range region. There was a relationship between applied load amplitude $P_{amp}$ and lifetime of cycle N for the tensile-shear, $P_{amp}=3395.5{\times}N^{-0.078}$. Using the stress-strain curve of the Al-5052 from tensile test, the simulations for fatigue specimens have been carried out using the implicit finite element code ABAQUS. The relation between von-Mises equivalent stress amplitude and number of cycles was found to be ${\sigma}_{eq}=514.7{\times}N^{-0.033}$.

Numerical Evaluation of the Influence of Joint Roughness on the Deformation Behavior of Jointed Rock Masses (절리면의 거칠기 특성이 정리암반의 거동에 미치는 영향에 대한 수치해석적 연구)

  • 이연규
    • Tunnel and Underground Space
    • /
    • v.11 no.3
    • /
    • pp.225-236
    • /
    • 2001
  • The roughness of rock joint is one of the most important parameters in developing the shear resistance and the tendency of dilation. Due to the damage accumulated with shearing displacement, the roughness angle is lowered continuously. It is known that dilation, shear strength hardening, and softening are directly related to the degradation of asperities. Much effort has been directed to incorporate the complicated damage mechanism of asperities into a constitutive model fur rock joints. This study presents an elasto-plastic formulation of joint behavior including elastic deformability, dilatancy and asperity surface damage. It is postulated that the plastic portion of incremental displacement 7an be decomposed into contributions from both sliding along the asperity surface and damage of asperity. Numerical cyclic shear tests are presented to illustrate th? performance of the derived incremental stress-displacement relation. A laboratory cyclic shear test is also simulated. Numerical examples reveal that the elasto-plastic joints model is promising.

  • PDF

Analytical assessment of RC beam-column connections strengthened with CFRP sheets

  • Le, Trung-Kien;Kim, Min;Lee, Ki-Hak;Lee, Jae-Hong
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05a
    • /
    • pp.470-473
    • /
    • 2006
  • Past experiences from recent earthquakes indicate that shear failures of beam-column connections were one of the main reasons causing significant damages and collapses of RC structures subjected to earthquake loadings. Many researchers and engineers have conducted to propose an effective way to improve the joint shear strength of RC connections. This paper presents an analytical model for the RC exterior beam-column joints strengthened with CFRP sheets. In the analytical model, the effect of shear behavior of the RC beam-column joint, bond slip of the beam longitudinal reinforcements and CFRP sheets were considered and incorporated into the non-linear structural analysis program. Final analytical results were compared with those from the experiment of eight exterior RC beam-column specimens. The analytical results showed that the developed connection model is very useful to investigate the hysteretic joint behavior and overall load-displacement response of the RC beam-column connections strengthened with CFRP sheets.

  • PDF