• 제목/요약/키워드: shear strength of joints

검색결과 426건 처리시간 0.028초

Shear Strength of Grout Type Transverse Joint

  • Kim, Yoon-Chil;Park, Jong-Jin
    • KCI Concrete Journal
    • /
    • 제14권1호
    • /
    • pp.8-14
    • /
    • 2002
  • This is the first of two part series on experimental studies of grout type transverse joints. In this study, grout type transverse joints between precast concrete slabs are statically tested to determine the cracking loads and ultimate shear capacities of the grout type transverse joints. The tests are performed with a loading equipment designed and constructed especially in the lab to induce shear failures on the joints of the test specimens. Shape of the transverse joints, grouting materials and amount of prestress are selected as test parameters for the study. The results indicate that epoxy is an excellent grouting material which can be used in limited locations where large tensile stress is acting on the slab. Longitudinal prestressing is also an effective method to increase the shear strength of the transverse joints. A rational method to estimate the cracking and ultimate loads for the design of grout type transverse joints is proposed based on the static loading tests. Success of the tests with shear loading equipment allowed continuing the research further onto the fatigue strength of the grout type joints, which will be presented in the second part of the paper.

  • PDF

프리캐스트 콘크리트 전단키의 역학적 거동에 관한 실험연구 (An Experimental Study on the Behavior of Precast Concrete Shear Keys)

  • 오병환;이준서;이형준;임동환
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1992년도 봄 학술발표회 논문집
    • /
    • pp.86-89
    • /
    • 1992
  • In the precast segmental method of construction, segments of a structure are precast, assembled, and tied together by post-tensioning to form the structure. Shear strength and behavior of points in precast concrete structures are important problems in the design of these structures. An experimental program was set up study the shear behavior of precast concrete shear keys. experimental models of keyed joints include a single key, representing one of a series include the shear key shape, d/h ratio(1/4, 1/5, 1/7), and inclined angle (45。 60。 75。). Two different types of joints, i.e., epoxied joint and dry joints were studied. From the present tests, it is found that epoxied joints have higher shear strength than those of dry joints, and that high d/h ratio keys have higher shear strength than those of low d/h ratio keys. The keys with 60。-inclined angle shows the highest shear strength among various angles.

  • PDF

Seismic resistance and mechanical behaviour of exterior beam-column joints with crossed inclined bars

  • Bakir, P.G.
    • Structural Engineering and Mechanics
    • /
    • 제16권4호
    • /
    • pp.493-517
    • /
    • 2003
  • Attempts at improving beam-column joint performance has resulted in non-conventional ways of reinforcement such as the use of the crossed inclined bars in the joint area. Despite the wide accumulation of test data, the influence of the crossed inclined bars on the shear strength of the cyclically loaded exterior beam-column joints has not yet been quantified and incorporated into code recommendations. In this study, the investigation of joints has been pursued on two different fronts. In the first approach, the parameters that influence the behaviour of the cyclically loaded beam-column joints are investigated. Several parametric studies are carried out to explore the shear resisting mechanisms of cyclically loaded beam-column joints using an experimental database consisting of a large number of joint tests. In the second approach, the mechanical behaviour of joints is investigated and the equations for the principal tensile strain and the average shear stress are derived from joint mechanics. It is apparent that the predictions of these two approaches agree well with each other. A design equation that predicts the shear strength of the cyclically loaded exterior beam-column joints is proposed. The design equation proposed has three major differences from the previously suggested design equations. First, the influence of the bond conditions on the joint shear strength is considered. Second, the equation takes the influence of the shear transfer mechanisms of the crossed inclined bars into account and, third, the equation is applicable on joints with high concrete cylinder strength. The proposed equation is compared with the predictions of the other design equations. It is apparent that the proposed design equation predicts the joint shear strength accurately and is an improvement on the existing code recommendations.

직접전단시험을 통한 암석 절리의 변형거동 및 미소파괴음 발생에 관한 연구 (Deformation Behaviors and Acoustic Emissions of Rock Joints in Direct Shear)

  • 김태혁;이상돈;이정인
    • 터널과지하공간
    • /
    • 제4권3호
    • /
    • pp.274-286
    • /
    • 1994
  • Direct shear tests were on ducted in a laboratory setting in order to investigate the shear strength and deformation behavior of rock joints. Also, the characteristics of acoustic emissions (AE) during shearing of rock joints were studied. The artificial rock joints were created by splitting the intact blocks of Hwangdeung granites and Iksan marbles. Joint roughness profiles were measured by a profile gage and then digitized by Image analyzer. Roughness profile indices(Rp) of the joints were calculated with these digitized data. Peak shear strength, residual shear strength, shear stiffness and maximum acoustic emission(AE) rate were investigated with joint roughness. The peak shear strenght, the residual shear strength and the shear stiffness were increased as roughness popfile index or normal stress increased in the shear tests of granites. In the tests of marble samples, the shear deformation characteristics were not directly affected by joint roughness. As the result of two directional shear tests, the shear characteristics were varied with shear direction. AE count rates were measured during the shear deformation and the AE signals in several stages of the deformation were analyzed in a frequency domain. The AE rate peaks coincided with the stress drops during the shear deformation of joint. The dominant frequencies of the AE signals were in the vicinity of 100 kHz fo rgranite sample and 900 kHz for marble samples. The distribution of amplitude was dispersed with increasing normal stress.

  • PDF

Shear behavior of composite frame inner joints of SRRC column-steel beam subjected to cyclic loading

  • Ma, Hui;Li, Sanzhi;Li, Zhe;Liu, Yunhe;Dong, Jing;Zhang, Peng
    • Steel and Composite Structures
    • /
    • 제27권4호
    • /
    • pp.495-508
    • /
    • 2018
  • In this paper, cyclic loading tests on composite frame inner joints of steel-reinforced recycled concrete (SRRC) column-steel beam were conducted. The main objective of the test was to obtain the shear behavior and analyze the shear strength of the joints. The main design parameters in the test were recycled coarse aggregate (RCA) replacement percentage and axial compression ratio. The failure process, failure modes, hysteresis curves and strain characteristics of the joints were obtained, and the influences of design parameters on the shear strength of the joints have been also analysed in detail. Results show that the failure modes of the joints area are typical shear failure. The shear bearing capacity of the joints maximally decreased by 10.07% with the increase in the RCA replacement percentage, whereas the shear bearing capacity of the joints maximally increased by 16.6% with the increase in the axial compression ratio. A specific strain analysis suggests that the shear bearing capacity of the joints was mainly provided by the three shear elements of the recycled aggregate concrete (RAC) diagonal compression strut, steel webs and stirrups of the joint area. According to the shear mechanism and test results, the calculation formulas of the shear bearing capacity of the three main shear elements were deduced separately. Thus, the calculation model of the shear bearing capacity of the composite joints considering the adverse effects of the RCA replacement percentage was established through a superposition method. The calculated values of shear strength based on the calculation model were in good agreement with the test values. It indicates that the calculation method in this study can reasonably predict the shear bearing capacity of the composite frame inner joints of SRRC column-steel beam.

전단을 받는 부유식 콘크리트 구조물 접합부의 강도 평가 (Strength Estimation of Joints in Floating Concrete Structures Subjected to Shear)

  • 양인환;김경철
    • 한국항해항만학회지
    • /
    • 제37권2호
    • /
    • pp.155-163
    • /
    • 2013
  • 이 연구에서는 전단하중을 받는 부유식 콘크리트 구조물 모듈 접합부의 구조거동 실험연구를 수행하였다. 모듈 접합부 전단키의 균열 양상, 전단거동 및 전단강도를 파악하였다. 전단강도의 영향을 파악하기 위해 전단키의 경사각도, 횡방향 구속응력 및 콘크리트의 압축강도 등을 실험변수로 고려하였다. 전단키의 경사각도가 증가함에 따라 접합부의 전단강도가 증가하였다. 또한, 구속응력이 증가함에 따라 전단키의 전단강도가 증가하였다. 실험변수에 따른 전단거동 실험결과를 토대로 접합부의 전단강도 평가식을 제안하였으며, 제안식에 의한 전단강도 예측값은 실험값에 근접하는 것으로 나타났다.

철근콘크리트 보-기둥 접합부의 전단강도 평가 (Shear Strength Estimate of Reinforced Concrete Beam-Column Joints)

  • 채희대;이정윤
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2004년도 추계 학술발표회 제16권2호
    • /
    • pp.389-392
    • /
    • 2004
  • An accurate and rational analytical proposal for determining the shear strengths of interior beam-column joints is presented in this paper. The proposed equation is derived using a compatiblity aided truss model theory. The accuracy of the proposed equation was checked by comparing calculated shear strength of joints with experimental results reported papers in literature. The comparison showed that the proposed equation predicted the experimental shear strength of joints with reasonable agreement.

  • PDF

Predicting shear strength of RC exterior beam-column joints by modified rotating-angle softened-truss model

  • Wong, Simon H.F.;Kuang, J.S.
    • Computers and Concrete
    • /
    • 제8권1호
    • /
    • pp.59-70
    • /
    • 2011
  • A theoretical model known as the modified rotating-angle softened-truss model (MRA-STM), which is a modification of Rotating-Angle Softened-Truss Model and Modified Compression Field Theory, is presented for the analysis of reinforced concrete membranes in shear. As an application, shear strength and behaviour of reinforced concrete exterior beam-column joints are analysed using the MRA-STM combining with the deep beam analogy. The joints are considered as RC panels and subjected to vertical and horizontal shear stresses from adjacent columns and beams. The strut and truss actions in a beam-column joint are represented by the effective transverse compression stresses and a softened concrete truss in the proposed model. The theoretical predictions of shear strength of reinforced concrete exterior beam-column joints from the proposed model show good agreement with the experimental results.

직교보를 고려한 RCS구조 보-기둥 접합부의 극한전단강도 (The Ultimate Shear Strength of RCS System Beam-Column Joints Considering the Transverse Beam)

  • 안재혁;박천석
    • 한국안전학회지
    • /
    • 제20권3호
    • /
    • pp.158-163
    • /
    • 2005
  • This paper is focusing on the model to predict the ultimate shear strength on joints of composite system (RCS) with reinforced concrete columns and steel beams considering the transverse beam. It reviews the ratio of experimental shear strength to design strength calculated by existing desist equations which are proposed by Kanno, Wight, Noguchi and the rising of strength by the transverse beams. When the shear strength of joints is estimated, it is necessary to do research work for the stress transfer mechanism considering two concrete strut of inner and outer panel by web of the transverse beam. In order to confirm it requires further experimental and analytical study.

Shear strength model for reinforced concrete beam-column joints based on hybrid approach

  • Parate, Kanak N.;Kumar, Ratnesh
    • Computers and Concrete
    • /
    • 제23권6호
    • /
    • pp.377-398
    • /
    • 2019
  • Behavior of RC beam-column joint is very complex as the composite material behaves differently in elastic and inelastic range. The approaches generally used for predicting joint shear strength are either based on theoretical, strut-and-tie or empirical methods. These approaches are incapable of predicting the accurate response of the joint for entire range of loading. In the present study a new generalized RC beam-column joint shear strength model based on hybrid approach i.e. combined strut-and-tie and empirical approach has been proposed. The contribution of governing parameters affecting the joint shear strength under compression has been derived from compressive strut approach whereas; the governing parameters active under tension has been extracted from empirical approach. The proposed model is applicable for various conditions such as, joints reinforced either with or without shear reinforcement, joints with wide beam or wide column, joints with transverse beams and slab, joints reinforced with X-bars, different anchorage of beam bar, and column subjected to various axial loading conditions. The joint shear strength prediction of the proposed model has been compared with 435 experimental results and with eleven popular models from literature. In comparison to other eleven models the prediction of the proposed model is found closest to the experimental results. Moreover, from statistical analysis of the results, the proposed model has the least coefficient of variation. The proposed model is simple in application and can be effectively used by designers.