• 제목/요약/키워드: shear strength equations

검색결과 269건 처리시간 0.028초

Static behaviour of multi-row stud shear connectors in high- strength concrete

  • Su, Qingtian;Yang, Guotao;Bradford, Mark A.
    • Steel and Composite Structures
    • /
    • 제17권6호
    • /
    • pp.967-980
    • /
    • 2014
  • In regions of high shear forces in composite bridges, headed stud shear connectors need to be arranged with a small spacing in order to satisfy the design requirement of resisting the high interface shear force present at this location. Despite this, studies related to groups of headed studs are somewhat rare. This paper presents an investigation of the static behaviour of grouped stud shear connectors in high-strength concrete. Descriptions are given of five push-out test specimens with different arrangements of the studs that were fabricated and tested, and the failure modes, load-slip response, ultimate load capacities and related slip values that were obtained are reported. It is found that the load-slip equation given by some researchers based on a single stud shear connector in normal strength concrete do not apply to grouped stud shear connectors in high-strength concrete, and an algebraic load-slip expression is proposed based on the test results. Comparisons between the test results and the formulae provided by some national codes show that the equations for the ultimate capacity provided in these codes are conservative when used for connectors in high-strength concrete. A reduction coefficient is proposed to take into account the effect of the studs being in a group.

Shear resistance of stud connectors in high strength concrete

  • Lee, Young Hak;Kim, Min Sook;Kim, Heecheul;Kim, Dae-Jin
    • Structural Engineering and Mechanics
    • /
    • 제52권4호
    • /
    • pp.647-661
    • /
    • 2014
  • The use of steel-concrete composite members has been significantly increased as they have the advantages of the reduction of cross sectional areas, excellent ductility against earthquake loadings and a longer life span than typical steel frame members. The increased use of composite members requires an intensive study on the shear resistance evaluation of stud connectors in high strength concrete. However, the applicability of currently available standards is limited to composite members with normal and lightweight strength concrete. In this paper, push-out tests were performed on 24 specimens to investigate the structural behavior and shear resistance of stud connectors in high strength concrete. Test parameters include the existence of shear studs, height to diameter ratio of a shear stud, its diameter and concrete cover thickness. A shear resistance equation of stud connectors is proposed through a linear regression analysis based on the test results. Its accuracy is compared with those of existing shear resistance equations for studs in normal and lightweight concrete.

철근콘크리트 깊은 보 스트럿-타이 모델의 콘크리트 스트럿의 유효강도 (Effective Strengths of Concrete Struts in Strut-Tie Models of Reinforced Concrete Deep Beams)

  • 채현수;윤영묵
    • 대한토목학회논문집
    • /
    • 제33권6호
    • /
    • pp.2195-2209
    • /
    • 2013
  • 스트럿-타이 모델 방법을 이용하여 철근콘크리트 깊은 보를 정확하게 해석하고 안전하게 설계하기 위해서는 콘크리트 스트럿의 유효강도를 정확하게 결정하여야 한다. 이 연구에서는 여러 설계기준서 및 연구문헌에서 제안된 세 종류의 대표적인 철근콘크리트 깊은 보의 스트럿-타이 모델을 위하여 철근콘크리트 깊은 보의 전단경간 비, 콘크리트의 압축강도, 그리고 휨철근 및 전단철근 비 등의 주요 설계변수들의 영향을 정확하게 반영할 수 있는 콘크리트 스트럿의 유효강도 식을 개발, 제안하였다. 현행 설계기준서 및 여러 연구문헌의 콘크리트 스트럿의 유효강도 식과 이 연구에서 제안한 유효강도 식을 이용하여 파괴실험이 수행된 241개 철근콘크리트 깊은 보의 극한강도를 평가하였으며, 그 결과의 비교분석을 통해 이 연구에서 제안한 스트럿 유효강도 식의 적합성을 평가하였다.

연결 플레이트를 사용한 프리캐스트 콘크리트 모듈러 보의 전단성능 (Shear Behaviour of Precast Concrete Modular Beam Using Connecting Plate)

  • 조창근;노경민;이영학
    • 한국공간구조학회논문집
    • /
    • 제21권4호
    • /
    • pp.65-72
    • /
    • 2021
  • The Precast concrete(PC) modular structures are a method of assembling pre-fabricated unit modules in the construction site. The essential aim of modular structures is to introduce a connection method that can ensure splicing performance and effectively resist shear strength. This study proposed PC module using a connecting plate that can replace splice sleeves and shear keys used in the conventional PC modular structures. To evaluate the splicing performance and shear capacity of the proposed method, the shear test was conducted by fabricating one monolithic reinforced concrete(RC) beam and two PC modular beams with a shear span-to-depth ratio as variables. The experimental results showed that the shear capacity of the PC modular beam was about 89% compared to that of the RC beam, and showed a failure of the RC beam according to the shear span-to-depth ratio. Therefore, it was considered that the connecting plate effectively transferred the stress between each PC module through the joint and ensure integrity. In addition, the applicability of shear strength equation of ACI 318-19 and Zsutty's equation to PC modular beams were evaluated. Results demonstrated that the improved shear strength equations are needed to consider reduction of shear strength in PC modules.

Shear resistance behaviors of a newly puzzle shape of crestbond rib shear connector: An experimental study

  • Chu, Thi Hai Vinh;Bui, Duc Vinh;Le, Van Phuoc Nhan;Kim, In-Tae;Ahn, Jin-Hee;Dao, Duy Kien
    • Steel and Composite Structures
    • /
    • 제21권5호
    • /
    • pp.1157-1182
    • /
    • 2016
  • A newly puzzle shape of crestbond rib shear connector is a type of ductile perfobond rib shear connector. This shear connector has some advantages, including relatively easy rebar installation and cutting, as well as the higher shear resistance strength. Thus, this study proposed a newly puzzle shape of crestbond rib with a "${\mho}$" shape, and its shear resistance behaviors and shear strengths were examined using push-out tests. Five main parameters were considered in the push-out specimens to evaluate the effects of shear resistance parameters such as the dimensions of the crestbond rib, transverse rebars in the crestbond dowel, concrete strength, rebar strength, and dowel action on the shear strength. The shear loading test results were used to compare the changes in the shear behaviors, failure modes, and shear strengths. It was found that the concrete strength and number of transverse rebars in the crestbond rib were significantly related to its shear resistance. After the initial bearing resistance behavior of the concrete dowel, a relative slip occurred in all the specimens. However, its rigid behavior to shear loading decreased the ductility of the shear connection. The cross-sectional area of the crestbond rib was also shown to have a minor effect on the shear resistance of the crestbond rib shear connector. The failure mechanism of the crestbond rib shear connector was complex, and included compression, shear, and tension. As a failure mode, a crack was initiated in the middle of the concrete slab in a vertical direction, and propagated with increasing shear load. Then, horizontal cracks occurred and propagated to the front and rear faces of the specimens. Based on the results of this study, a design shear strength equation was proposed and compared with previously suggested equations.

Tests and Design Provisions for Reinforced-Concrete Beams Strengthened in Shear Using FRP Sheets and Strips

  • Mofidi, Amir;Chaallal, Omar
    • International Journal of Concrete Structures and Materials
    • /
    • 제8권2호
    • /
    • pp.117-128
    • /
    • 2014
  • Numerous investigations of RC beams strengthened in shear with externally-bonded (EB) fibre-reinforced polymer (FRP) sheets, plates and strips have been successfully conducted in recent years. These valuable studies have highlighted a number of influencing parameters that are not captured by the design guidelines. The objective of this study was: (1) to highlight experimentally and analytically the influential parameters on the shear contribution of FRP to RC beams strengthened in shear using EB FRP sheets and strips; and (2) to develop a set of transparent, coherent, and evolutionary design equations to calculate the shear resistance of RC beams strengthened in shear. In the experimental part of this study, 12 tests were performed on 4,520-mm-long T-beams. The specimens were strengthened in shear using carbon FRP (CFRP) strips and sheets. The test variables were: (1) the presence or absence of internal transverse-steel reinforcement; (2) use of FRP sheets versus FRP strips; and (3) the axial rigidity of the EB FRP reinforcement. In the analytical part of this study, new design equations were proposed to consider the effect of transverse-steel in addition to other influential parameters on the shear contribution of FRP. The accuracy of the proposed equations has been verified in this study by predicting the FRP shear contribution of experimentally tested RC beams.

스트럿-타이 모델에 의한 고강도 철근콘크리트 깊은 보의 전단강도 예측에 관한 연구 (A Study on Shear Strength Prediction for High-Strength Reinforced Concrete Deep Beams Using Strut-and-Tie Model)

  • 이우진;서수연;윤승조;김성수
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2003년도 봄 학술발표회 논문집
    • /
    • pp.918-923
    • /
    • 2003
  • Reinforced concrete deep beams are commonly used in many structural applications, including transfer girders, pile caps, foundation walls, and offshore structures. The existing design methods were developed and calibrated using normal strength concrete test results, and their applicability th HSC deep beams must be assessed. For the shear strength prediction of high-strength concrete(HSC) deep beams, this paper proposed Softened Strut-and-Tie Model(SSTM) considered HSC and bending moment effect. The shear strength predictions of the refined model, the formulas the ACI 318-02 Appendix A STM, and Eq. of ACI 318-99 11.8 are compared with the collected experimental data of 74 HSC deep beams with compressive strength in the range of 49-78MPa . It is shown the shear strength of deep beam calculated by those equations are conservative on comparing test results. The comparison shows that the performance of the proposed SSTM is better than the ACI Code approach for all the parameters under comparison. The parameters reviewed include concrete strength, the shear span-depth ratio, and the ratio of horizontal and vertical reinforcement. The proposed SSTM gave a mean predicted to experimental ratio of 0.99, 32 percent higher than ACI 318-02 Code, however with the low coefficient variation.

  • PDF

강재 상자형보-원형기둥 접합부의 응력평가식에 관한 연구 (A Study on the Stress Evaluation Equations for Steel Circular Column-to- Box Beam Connections)

  • 박용명;장원제;황원섭
    • 한국강구조학회 논문집
    • /
    • 제16권5호통권72호
    • /
    • pp.505-517
    • /
    • 2004
  • 상자형보와 윈형기둥으로 구성된 강재교각 정합부의 응력평가식 제안에 대한 연구이다. 원형기둥을 각형으로 치환하여 사용하고 있는 기존의 응력평가식은 정합각도가 감소함에 따라 전단지언능력은 과소평가되고, 전단응력은 접협각도가 증가함에 따라 과대하게 평가되는 문제점이 있다. 따라서 이라한 문제점 을 보완하기 위해 다양한 매개변수, 즉 접합각도 (${\alpha}$), 전단지간/보의 폭비 (L/B) 기둥의 휨강성/보의 휨강성비 (k) 를 사용하여 유한요소해석을 수행하고 해석결과를 이용하여 기존 응력평가식의 문제점을 보완할 수 있는 응력평가식을 제안하였다. 한편, 허용응력 대비 극한내하력의 안전율을 검토하기 위해 재료 및 기하 비선형해석을 수행하여 제안식의 타당성을 확인하였다.

Minimum shear reinforcement ratio of prestressed concrete members for safe design

  • Park, Min-Kook;Lee, Deuck Hang;Ju, Hyunjin;Hwang, Jin-Ha;Choi, Seung-Ho;Kim, Kang Su
    • Structural Engineering and Mechanics
    • /
    • 제56권2호
    • /
    • pp.317-340
    • /
    • 2015
  • Design codes have specified the minimum shear reinforcement requirement for reinforced concrete (RC) and prestressed concrete (PSC) members to prevent brittle and premature shear failure. They are, however, very different from one another, and particularly, ACI318 code allows the required minimum shear reinforcement to be reduced in PSC members, compared to that in RC members, by specifying the additional equation for PSC members whose basis is not clear. In this paper, the minimum shear reinforcement ratio for PSC members was proposed, which can provide a sufficient reserved shear strength and deformation capacity. The proposed equation was also verified by the test results of PSC specimens lightly reinforced in shear, comparing to design codes and other proposed equations from previous studies.

탄소성이론을 이용한 복합지반의 대표 강도정수 예측 (Determination of Composite Strength Parameter Using Elasto-Plastic Theory)

  • 이주형;김영욱;박용원
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2002년도 봄 학술발표회 논문집
    • /
    • pp.93-100
    • /
    • 2002
  • Vertical reinforcement of soft soils using the deep mixing method has received increasing applications. In this study, the theory of elasticity and plasticity including the upper bound theorem of limit analysis were used to derive the equations for obtaining composite elastic properties and shear strength parameters. The developed equations were validated using the finite element computer program SAGE CRISP. The analysis involved 4 different cases-two different type of soil and replacement ratios. Tile results of the analysis show that the proposed equations could determine the properties of composite material for practical applications.

  • PDF