• 제목/요약/키워드: shear rheology

검색결과 302건 처리시간 0.024초

Experimental study on the shear thinning effects of viscosity index improver added lubricant by in-situ optical viscometer

  • Jang, Siyonl
    • Korea-Australia Rheology Journal
    • /
    • 제15권3호
    • /
    • pp.117-124
    • /
    • 2003
  • Elastohydrodynamic lubrication (EHL) film is measured under the condition of viscosity index improver added to base oil. In-situ optical contact method using the interference principle make the measuring resolution of ~5 nm possible and enables the measuring range all over the contact area of up to ~300 $\mu\textrm{m}$ diameter. What is more important to the developed method by the author is that the measurement of EHL film thickness is possible in the range from 100 nm to 2 $\mu\textrm{m}$, which is the regime of worst contact failures in precision machinery. Viscosity index improver (VII) is one of the major additives to the modem multigrade lubricants for the viscosity stability against temperature rise. However, it causes shear thinning effects which make the film thickness lessened very delicately at high shear rate (over $10^5 s^{-1}$) of general EHL contact regime. In order to exactly verify the VIIs performance of viscosity stability at such high shear rate, it is necessary to make the measurement of EHL film thickness down to ~100 nm with fine resolution for the preliminary study of viscosity control. In this work, EHL film thickness of VII added lubricant is measured with the resolution of ~5 nm, which will give very informative design tool for the synthesis of lubricants regarding the matter of load carrying capacity at high shear rate condition.

Transient microfluidic approach to the investigation of erythrocyte aggregation: comparison and validation of the method

  • Hou, Jian-Xun;Shin, Se-Hyun
    • Korea-Australia Rheology Journal
    • /
    • 제20권4호
    • /
    • pp.253-260
    • /
    • 2008
  • A method based on transient shear flow dynamics of red cell aggregates was developed to investigate reversible re-aggregation processes with decreasing shear flow. In the microchannel-flow aggregometry, the aggregated red blood cells that are subjected to continuously decreasing shear stress in microchannel flow were measured with the use of a laser-scattering technique. Both the laser-backscattered intensity and pressure were simultaneously measured with respect to time, resulting in shear stress ranging from $0{\sim}35\;Pa$ for a time period of less than 30 seconds. The time dependent recording of the backscattered light intensity (syllectogram) yielded an upward convex curve with a peak point, which reflected the transition threshold of aggregation in the RBC suspensions. Critical-time and critical-shear stress corresponding to the peak point were examined by varying the initial pressure-differential and the micro channel depth, and these results showed good potential for being used as new aggregation indices. In the present study, these newly proposed indices were also validated by differentiating the effect of fibrinogen on RBC aggregation and then these indices were compared to the conventional indices that were measured by a rotational aggregometer.

Measuring rheological properties using a slotted plate device

  • Kee, Daniel-De;Kim, Young-Dae;Nguyen, Q. Dzuy
    • Korea-Australia Rheology Journal
    • /
    • 제19권2호
    • /
    • pp.75-80
    • /
    • 2007
  • The slotted plate technique has previously been shown to be a successful method for directly measuring the static yield stress of suspensions. In this study, we further establish the usefulness of the slotted plate device as a rheometer especially at low shear rates, taking advantage of the extremely low speeds of the slotted plate technique. Newtonian fluids, a shear thinning fluid, and yield stress fluids were tested using the slotted plate device and the results were compared with those from a commercial rheometer using different standard flow geometries. The relationship between the stress on the plate and the viscosity for the slotted plate device obtained by dimensional analysis (drag) predicts a linear relationship between the force at the plate and the plate speed, consistent with the experimental data. The slotted plate device can measure viscosities at very low shear rates. The apparent viscosity - shear-rate data obtained from the slotted plate device are complementary to those obtained using a commercial rheometer. That is : the slotted plate can measure viscosity in the shear rate range $10^{-7}<\dot{\gamma}<10^{-3}\;s^{-1}$, while the commercial rheometer measures viscosity at shear rates higher than $10^{-3}\;s^{-1}$.