• 제목/요약/키워드: shear resisting capacity

검색결과 128건 처리시간 0.02초

Seismic performance of low and medium-rise RC buildings with wide-beam and ribbed-slab

  • Turker, Kaan;Gungor, Ilhan
    • Earthquakes and Structures
    • /
    • 제15권4호
    • /
    • pp.383-393
    • /
    • 2018
  • In this study, seismic performance of low and medium-rise RC buildings with wide-beam and ribbed-slab were evaluated numerically. Moment resisting systems consisting of moment and dual frame were selected as structural system of the buildings. Sufficiency of moment resisting wide-beam frames designed with high ductility requirements were evaluated. Upon necessity frames were stiffen with shear-walls. The buildings were designed in accordance with the Turkish Earthquake Code (TEC 2007) and were evaluated by using the strain-based nonlinear static method specified in TEC. Second order (P-delta) effects on the lateral load capacity of the buildings were also assessed in the study. The results indicated that the predicted seismic performances were achieved for the low-rise (4-story) building with the high ductility requirements. However, the moment resisting frame with high ductility was not adequate for the medium-rise building. Addition of sufficient amount of shear-walls to the system proved to be efficient way of providing the target performance of structure.

Shear strength analysis and prediction of reinforced concrete transfer beams in high-rise buildings

  • Londhe, R.S.
    • Structural Engineering and Mechanics
    • /
    • 제37권1호
    • /
    • pp.39-59
    • /
    • 2011
  • Results of an experimental investigation on the behavior and ultimate shear capacity of 27 reinforced concrete Transfer (deep) beams are summarized. The main variables were percent longitudinal(tension) steel (0.28 to 0.60%), percent horizontal web steel (0.60 to 2.40%), percent vertical steel (0.50to 2.25%), percent orthogonal web steel, shear span-to-depth ratio (1.10 to 3.20) and cube concrete compressive strength (32 MPa to 48 MPa).The span of the beam has been kept constant at 1000 mm with100 mm overhang on either side of the supports. The result of this study shows that the load transfer capacity of transfer (deep) beam with distributed longitudinal reinforcement is increased significantly. Also, the vertical shear reinforcement is more effective than the horizontal reinforcement in increasing the shear capacity as well as to transform the brittle mode of failure in to the ductile mode of failure. It has been observed that the orthogonal web reinforcement is highly influencing parameter to generate the shear capacity of transfer beams as well as its failure modes. Moreover, the results from the experiments have been processed suitably and presented an analytical model for design of transfer beams in high-rise buildings for estimating the shear capacity of beams.

CFRP로 매립 보강된 RC보의 전단 보강 효과에 관한 실험적 연구 (An Experimental Study on Shear Resisting Effect of Reinforced Concrete Beams Filling-up Carbon Fiber Rod Plastic)

  • 김영식;이형석;박성무
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제9권4호
    • /
    • pp.187-194
    • /
    • 2005
  • 이 연구의 목적은 보강재로 보강된 철근콘크리트 보의 전단저항거동을 실험적으로 연구하는데 있다. 7개의 시험체를 제작하여 정적하중을 단조재하 하에 실험하였다. 실험의 주된 변수는 보강재의 보강방법 및 방향을 사용하였다. 본 연구의 목적은 CFRP-rod를 사용한 매립공법에 의한 전단보강효과를 파악하고자 한다. 이 실험의 결과는 CFRP로 보강된 철근콘크리트 보의 극한 전단강도가 현저히 증가하는 것을 나타내고 있다.

Experimental study on cyclic behavior of reinforced concrete parallel redundancy walls

  • Lua, Yiqiu;Huang, Liang
    • Structural Engineering and Mechanics
    • /
    • 제52권6호
    • /
    • pp.1177-1191
    • /
    • 2014
  • Reinforced concrete (RC) shear walls are one of the most commonly used lateral-load resisting systems in high-rise buildings. RC Parallel redundancy walls studied herein consist of two parts nested to each other. These two parts have different mechanical behaviors and energy dissipation mechanisms. In this paper, experimental studies of four 1/2-scale specimens representing this concept, which are subjected to in-plane cyclic loading, are presented and test results are discussed. Two specimens consist of a wall frame with barbell-shaped walls embedded in it, and the other two consist of a wall frame and braced walls nested each other. The research mainly focuses on the failure mechanism, strength, hysteresis loop, energy dissipation capacity and stiffness of these walls. Results show that the RC parallel redundancy wall is an efficient lateral load resisting component that acts as a "dual" system with good ductility and energy dissipation capacity. One main part absorbs a greater degree of the energy exerted by an earthquake and fails first, whereas the other part can still behave as an independent role in bearing loads after earthquakes.

능력설계에 의한 RC 연결전단벽 구조의 내진설계 (Application of Capacity Design Methodology to RC Coupled Shear Wall)

  • 이한선;정성욱;고동우
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2005년도 봄학술 발표회 논문집(I)
    • /
    • pp.295-298
    • /
    • 2005
  • Coupled shear wall(CSW) has been adopted as a lateral force resisting system in building frame structures. New Zealand code recommends the capacity design in designing the CSW. Capacity design based on using moment redistribution of member force may provide the economical benefit to designer. In this study, CSW's are designed by both capacity design and strength -based design. The design results and the seismic performance are compared by using nonlinear static analyses. The amount of reinforcement of shear wall and the section area of steel coupling beams by capacity design appear to be reduced by 19$\%$ and 17$\%$, respectively. Also CSW designed by capacity design shows good seismic performance at the ultimate state.

  • PDF

전단보강근이 배근된 철근콘크리트 보의 CFRP전단보강효과에 관한 실험적 연구 (A Study on Shear Resisting Effect of Reinforced Concrete Beams Filling-up Carbon Fiber Rod Plastic)

  • 김우현;이형석;김영식;박성무
    • 한국공간구조학회:학술대회논문집
    • /
    • 한국공간구조학회 2005년도 춘계학술발표회 및 정기총회 2권1호(통권2호)
    • /
    • pp.175-182
    • /
    • 2005
  • The purpose of this study is to investigate experimentally the shear resisting behavior of the reinforced concrete beams strengthened with reinforcement materials(CFRP). Ten specimens were manufactured and tested under static monotonic loading. The main variables in the test were a space of steel reinforcement and direction of CFRP reinforcement. The test result Indicated that the method of CFRP increase significantly the shear strength of a reinforced concrete beam

  • PDF

CFRP-Rod로 전단 보강된 철근콘크리트 보의 전단거동에 관한 실험적 연구 (An Experimental study on Shear Resisting Effect of Reinforced Concrete Beams Filling-up Carbon Fiber Rod Plastic)

  • 김영식;박성무
    • 한국공간구조학회:학술대회논문집
    • /
    • 한국공간구조학회 2005년도 춘계학술발표회 및 정기총회 2권1호(통권2호)
    • /
    • pp.183-190
    • /
    • 2005
  • 이 연구의 목적은 CFRP로 보강된 철근콘크리트 보의 전단저항거동을 실험적으로 연구하는데 있다. 6개의 시험체를 제작하여 정적하중을 단조재하 하에 실험하였다. 실험의 주된 변수는 보강재의 좌강간격 및 비(량)을 두어 실험을 실시하였다. 본 연구의 목적은 CFRP-rod를 사용한 매립공법에 의한 전단보강효과를 파악하고자 한다. 이 실험의 결과는 CFRP의 보강된 철근콘크리트 보의 극한 전단강도가 증가하는 것을 나타내고 있다.

  • PDF

Prediction of shear strength and drift capacity of corroded reinforced concrete structural shear walls

  • Yang, Zhihong;Li, Bing
    • Structural Engineering and Mechanics
    • /
    • 제83권2호
    • /
    • pp.245-257
    • /
    • 2022
  • As the main lateral load resisting system in high-rise reinforced concrete structures, the mechanical performance of shear wall has a significant impact on the structure, especially for high-rise buildings. Steel corrosion has been recognized as an important factor affecting the mechanical performance and durability of the reinforced concrete structures. To investigate the effect on the seismic behaviour of corroded reinforced concrete shear wall induced by corrosion, analytical investigations and simulations were done to observe the effect of corrosion on the ultimate seismic capacity and drift capacity of shear walls. To ensure the accuracy of the simulation software, several validations were made using both non-corroded and corroded reinforced concrete shear walls based on some test results in previous literature. Thereafter, a parametric study, including 200 FE models, was done to study the influence of some critical parameters on corroded structural shear walls with boundary element. These parameters include corrosion levels, axial force ratio, aspect ratio, and concrete compressive strength. The results obtained would then be used to propose equations to predict the seismic resistance and drift capacity of shear walls with various corrosion levels.

Optimized stiffener detailing for shear links in eccentrically braced frames

  • Ozkilic, Yasin O.
    • Steel and Composite Structures
    • /
    • 제39권1호
    • /
    • pp.35-50
    • /
    • 2021
  • Eccentrically braced frames (EBFs) are utilized as a lateral resisting system in high seismic zones. Links are the primary source of energy dissipation and they are exposed to high deformation, which may lead to buckling. Web stiffeners were introduced to prevent buckling of shear link. AISC 341 provides the required vertical stiffeners for a shear link. In this study, different stiffener configurations were examined. The main objective is to improve the behavior of short links using different stiffener configurations. Pursuant to this goal, a comprehensive numerical study is conducted using ABAQUS. Shear links with different stiffener configurations were subjected to cyclic loading using loading protocol mandated by AISC 341. The results are compared in terms of energy dissipation and shear capacities and rupture index. The proposed stiffener configurations were further verified with different link length ratios, I-shapes and thickness of stiffener. Based on the results, the stiffener configuration with two vertical and two diagonal stiffeners perpendicular to each other is recommended. The proposed stiffener configuration can increase the shear capacity, energy dissipation capacity and the ratio of energy/weight up to 27%, 38% and 30%, respectively. Detailing of the proposed stiffener configuration is presented.

절곡형 전단보강근을 사용한 슬래브-기둥 접합부의 이력 거동 (Hysteretic Behavior of Slab-Column Joint Using Bended Type Shear Reinforcement)

  • 이현호;이도범;이리형
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제10권3호
    • /
    • pp.211-218
    • /
    • 2006
  • 본 연구에서는 거주형 무량판 구조의 뚫림 전단을 방지하기 위한 연속 절곡된 전단 보강근을 개발하였다. 이를 적용한 슬래브-기둥 접합부에 있어 개발 전단 보강근의 뚫림 전단 성능을 평가하기 위하여, 구조 성능 실험을 수행하였다. 실험 변수는 전단보강근이 없는 경우, 개발 전단보강근을 사용한 경우, 헤드 스터드를 사용한 경우이다. 수평하중에 대한 저항성능을 평가하기 위하여 일정축력하에서의 이력 하중 실험을 수행하였다. 실험결과는 전체 변위 및 접합부 강도 등으로 평가되었다. 이러한 결과로부터, 개발된 전단보강근이 층간변위비 거동에 있어 우수한 성능을 보유함을 확인할 수 있었다.