• Title/Summary/Keyword: shear property

Search Result 629, Processing Time 0.031 seconds

Mechanical Properties of Cotton Fabric Treated with BTCA and Polyalkkyleneoxide modified aminofunctional silicone (BTCA와 실리론 처리 면직물의 역학적 성질)

  • 조성교;남승현
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.24 no.7
    • /
    • pp.987-994
    • /
    • 2000
  • Cotton fabrics were finished with mixture of BTCA and silicone by pad-dry-cure process to achieve better mechanical properties than those of finished with BTCA alone. The changes of mechanical properties o( finished cotton fabrics were measured with by the KES-FB System and the hand values were calculated from the data of mechanical properties. With the durable press finish with BTCA tensile, bending, shear and compression properties increased. In hand values, Stiffness Crispness and Anti-Drape Stiffness increased, and Fullness & Softness decreased. Whereas silicone treatment reduced bending and shear properties and improved tensile and compressional resilience. Thus, Stiffness Crispness and Anti-Drape Stiffness decreased, and Fullness & Softness increased. These results indicated that BTCA treatment restricts fiber/yarn mobility in the fabric structure due to crosslinking, but silicone treatment reduces inter-fiber and inter-yarn frictional forces. Therefore, finish with mixture of BTCA and silicone provided cotton fabrics with a lower Stiffness, Crispness and Anti-Drape Stiffness and a higher Fullness & Softnesss than finish with BTCA alone.

  • PDF

Finite element dynamic analysis of laminated composite beams under moving loads

  • Kahya, Volkan
    • Structural Engineering and Mechanics
    • /
    • v.42 no.5
    • /
    • pp.729-745
    • /
    • 2012
  • This study presents dynamic analysis of laminated beams traversed by moving loads using a multilayered beam element based on the first-order shear deformation theory. The present element consists of N layers with different thickness and material property, and has (3N + 7) degrees of freedom corresponding three axial, four transversal, and 3N rotational displacements. Delamination and interfacial slip are not allowed. Comparisons with analytical and/or numerical results available in literature for some illustrative examples are made. Numerical results for natural frequencies, deflections and stresses of laminated beams are given to explain the effect of load speed, lamina layup, and boundary conditions.

Evaluation of mechnical preoperties of vibration damping steel sheets and their application to automobile engine oil pan (제진강판의 기계적 특성평가와 자동차오일팬으로의 적용)

  • 정재환;민병두;하용철
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1994.06a
    • /
    • pp.99-118
    • /
    • 1994
  • In recent years reduction in noise and vibration in automobile has been strongly required not only from the standpoint of environmental regulations but also for raising the commercial value and ride comfort. Vibration damping steel sheets, which are composites made by sandwitching a visco-elastic resin layer between two steel sheets, have been developed as effective noise-abating materials and have found a growth of use in automobile industries. Vibration damping steel sheets for commercial use must be excellent in vibration damping property, press formability and spot weldability, but are inferior to ordinary steel sheets. In this study, the mechanical properties of vibration damping steel are evaluated, and press formability is analysed on the basis of those properties and shear bonding strength. The development of engine oil pan using damping steel sheets are also reported, focusing on serious problems in oil pan drawing.

Study on Stress Transfer Property for Embedded FBG Strain Sensors in Concrete Monitoring

  • Jang, Il-Young;Yun, Ying-Wei
    • International Journal of Concrete Structures and Materials
    • /
    • v.3 no.1
    • /
    • pp.33-37
    • /
    • 2009
  • Fiber Bragg grating (FBG) sensors already have been the focus for structural health monitoring (SHM) due to their distinguishing advantages. However, as bare optical fiber is very fragile, bare FBG strain sensor without encapsulation can not properly be applied in practical infrastructures. Therefore encapsulation techniques for making encapsulated FBG strain sensor show very important in pushing forward the application of FBG strain sensors in SHM. In this paper, a simplified approximate method to analyze the stress transferring rules for embedded FBG strain sensors in concrete monitoring is put forward according to mechanics of composite materials. Shear lag theory is applied to analyze the stress transferring rule of embedded FBG strain sensor in measured host material at the first time. The measured host objects (concrete) and the encapsulated FBG strain sensor are regarded as a composite, and then the stress transfer formula and stress transfer coefficient of encapsulated FBG strain sensor are obtained.

Study on the Functionalization of Waste EPDM and PP Blend

  • Chung, Kyungho;Kim, Jinhee
    • Elastomers and Composites
    • /
    • v.50 no.4
    • /
    • pp.245-250
    • /
    • 2015
  • Recycling of ethylene-propylene-diene terpolymer (EPDM) scrap was tried by blending with polypropylene (PP). EPDM scrap powder was prepared by shear pulverization process at high temperature, which may lead to selective chain scission induced by difference in the critical elastic coefficient. On the other hand, EPDM scrap powder was prepared by adding a selected reclaiming agent during shear pulverization process at high temperature. Terpene as a bonding agent was then introduced to improve adhesion property. PP, used as a matrix for manufacturing thermoplastic elastomer, was modified by the incorporation of dicumyl peroxide and maleic anhydride. The functionalized EPDM and modified PP were blended and cured dynamically at $190^{\circ}C$. The blend materials prepared in this study showed the comparable results to those of conventional TPE in terms of tensile and flow properties. Also, the odor component of recycled EPDM was analyzed using GC-MS.

The Mechanical Properties of Corrugated Cardboard using Equivalent Evaluation (등가 물성 평가를 이용한 골판지의 물성치)

  • Kwon, Kyung Young;Jung, Jong-Yun
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.37 no.1
    • /
    • pp.157-164
    • /
    • 2014
  • The usage of corrugated cardboard for packing material is increasing in these days because it is light and easy to manufacture packing boxes. However, the structure analysis of packing boxes, made of cardboard, is not well carried. The reason can be deduced that its mechanical properties for structure analysis are not well known. The cardboards are made different shapes with various types of raw materials that are paper-based compound. In addition, the cardboards are considered to be orthotropic material. This research finds mechanical properties of triple layered cardboard which is composed of outer liner and inner liner. The moduli of elasticity and of shear for liners are found from tension test and T-Peel test. The mechanical properties of the cardboard are calculated using the super position method and equivalent evaluation method.

Analysis of Diffusion Bonded Parts Using Immersed UT Method (수침초음파를 이용한 확산접합부평가)

  • Park, J.C.;Oh, C.S.;Kim, Y.S.;Kim, J.G.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.12 no.3
    • /
    • pp.33-39
    • /
    • 1992
  • This paper presents a summary of the immersion ultrasonic test to analyze the quality of diffusion bonding parts. The most important property of diffusion bonding parts is bonding strength, and that can be obtained by shear test. By comparing among data obtained by ultrasonic test(C-Scan) and those by shear test (bonding strength), these data are shown to be in good relation. Therefore ultrasonic C-Scan test result can be used successfully in quantitative quality control for diffusion bonded parts.

  • PDF

Time-dependent Flow Properties of Commercial Kochujang (Hot Pepper-Soybean Paste)

  • Choi, Su-Jin;Yoo, Byoung-Seung
    • Food Science and Biotechnology
    • /
    • v.14 no.3
    • /
    • pp.413-415
    • /
    • 2005
  • Time-dependent flow properties of commercial kochujang (hot pepper-soybean paste) were evaluated at various shear rates (5, 15, 25, and $35\;sec^{-1}$) and temperatures (5, 15, and $25^{\circ}C$). Flow properties of all samples showed thixotropic behaviors, which were qualitatively evaluated and quantitatively described by the Weltman, Hahn, and Figoni and Shoemaker models. Time-dependent flow properties of kochujang were found to vary over the range of the shear rate and temperature investigated. Time-dependent models of Weltman and Hahn were suitable ($R^2=0.923-0.987$) for commercial kochujang.

Simulation-Based Design of Shear Mixer for Improving Mixing Performance (혼합효율 개선을 위한 Shear Mixer의 시뮬레이션 기반 형상 설계)

  • Kim, Tae-Young;Jeon, Gyu-Mok;Ock, Dae-Kyung;Park, Jong-Chun
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.20 no.2
    • /
    • pp.107-116
    • /
    • 2017
  • When drilling operation is being performed, many physical and chemical changes are occurred near wellbore. To handle various changes of well condition and keep drilling process safe, additives of bulk, such as bentonite for increasing density of drilling mud, barite for increasing viscosity of drilling mud, polymer for chemical control, or surfactant, are added into drilling mud through a mud shear mixer. Because the achievement of the required material property through mud mixing system is essential to stabilize drilling system, it is of importance to analyze multi-phase flow during mud mixing process, which is directly related to increase mixing performance of the system and guarantee the safety of the whole drilling system. In this study, a series of liquid-solid flow simulation based on a computational fluid dynamics (CFD) are performed with comparing to solid concentration in experiment by Gilles et al. [2004] to understand the characteristics of liquid-solid mixing in a mud shear mixer. And then, the simulation-based design of shear mixer are carried out to improve mixing performance in a mud handling system.

The Variation of Mechanical Properties with Directions of PET High Stretch Fabrics (PET 고신축사 직물의 방향에 따른 역학적 특성의 변화)

  • 김영민;박종범;김주애;조현혹
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.26 no.1
    • /
    • pp.160-167
    • /
    • 2002
  • Stretch fabrics are wide-spread for high performance clothing use with requirements of fitness and adaptability to human's movement. A newly developed 100% PET high stretch fabric has excellent properties with respect to stretch, softness, bulkiness, and apparent volume compared to PET filament fabrics. The 100% PET high stretch fabric shows advantages of a dimensional stability, dye and agent adaptability in dying and finishing process, a property of stretch recovery after washing and lower production cost than that of spandex fabric. KES-FB was used to measure mechanical properties to various directions of the fabric. This study centered on whether the 100% PET high stretch fabric is suitable to quality and shape retention of fabric by testing several properties including tensile, compression, shear, bending and surface characteristic to various measuring directions. Tensile linearity showed maximum value at $0^{\circ}$ in plain and $90^{\circ}$ in twill. Shear Stiffness of plain and twill showed maximum value equally at $45^{\circ}\;and\;135^{\circ}$. Bending rigidity showed maximum value at $0^{\circ}$ in plain and $45^{\circ}$ twill. Mean deviation of MIU showed maximum value at $0^{\circ}\;and\;90^{\circ}$ in plain and $135^{\circ}$ in twill.