• Title/Summary/Keyword: shear plane

Search Result 982, Processing Time 0.022 seconds

Geological Structure of the Jirisan Metamorphic Complex of the Yeongnam Massif in the Hwagae Area, Korea (화개지역에서 영남육괴 지리산 변성암복합체의 지질구조)

  • Lee, Deok-Seon;Kang, Ji-Hoon
    • The Journal of the Petrological Society of Korea
    • /
    • v.22 no.4
    • /
    • pp.251-261
    • /
    • 2013
  • Hwagae area, which is situated in the southeastern part of the Jirisan province, Yeongnam massif, Korea, is mainly composed of Precambrian Jirisan metamorphic rock complex (JMRC). Lithofacies distribution of the Precambrian constituent rocks mainly shows NS-trending tight fold and EW-trending open fold. This paper researched deformational phased structural characteristics of JMRC based on the geometric and kinematic features and the forming sequence of multi-deformed rock structures, and suggests that the geological structure of this area was formed through at least three phases of ductile deformation. (1) Most of structural elements related to the $D_1$ deformation were recognized as $S_{0-1-2}$ composite foliation which was transposed by the $D_2$ deformation. (2) The $D_2$ deformation occurred under the EW-directed tectonic compression, and formed the NS-trending $F_2$ fold and $D_2$ ductile shear zone which is (sub)parallel to the axial plane of $F_2$ fold. (3) The $D_3$ deformation occurred under the NS-directed tectonic compression, and partially reoriented the pre-$D_3$ structural elements into ENE or WNW direction. It indicates that the distribution of Precambrian lithofacies showing NS and EW-trending folds in the Hwagae area is closely associated with the $D_2$ and $D_3$ deformations, respectively.

Analysis of Deformation and Stability of Slope at the Wiri Region of Local Road 999 Nearby Andong, Gyeongsangbukdo in Korea. (999번 지방도로 경상북도 안동시 위리 지역의 사면 변형 및 안정성 분석)

  • 장현식;장보안
    • The Journal of Engineering Geology
    • /
    • v.10 no.1
    • /
    • pp.1-12
    • /
    • 2000
  • Heaving of road and subsidence of slope took place at the Wiri region of the local highway 999 in Gyeongsangbukdo, Korea after heavy rain in the next year of construction. Although the state government had performed remedial treatments by reducing the angle and the height of the slope, deformation had never stopped. Therefore, we have preformed the analysis of deformation and stabilityof the slope. Study area consists of the Cretaceous shale, siltstone and sandstone and two faults are found. The major deformation occurred by sliding of rock mass along faults after heavy rain because not only thepore pressure at the fault plane and the unit weight of sliding mass increased, but did the shearstrength of saturated fault clay become very low. The decrease in shear strength of saturated fault clayis the major factor among the reasons for deformation. Numerical simulations using limit equilibriummodel, finite difference model and finite element model were performed for eight cross sections.Although safety factors are above 1.7 during the dry season, they become below 1.0 when groundwaterlevel raises to surface. The maximum displacement is about 15-3Ocm. However, safety factors increasedto above 2.4 and the maximum displacement is below 2.08cm after remedial treatment, Indicating thatthe slope becomes stable.

  • PDF

Analysis of Hydraulic Characteristics of Flood Plain Using Two-Dimensional Unsteady Model (2차원 부정류 모형을 이용한 둔치의 수리특성 분석)

  • Ku, Young Hun;Song, Chang Geun;Kim, Young Do;Seo, Il Wo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.3
    • /
    • pp.997-1005
    • /
    • 2013
  • Since the cross-sectional shape of the Nakdong river is compound type, the water stage rises up to the top of the flood plane, as the flow discharge increases during the extreme rain storm in summer. The recent increase of rainfall intensity and flood frequency results in the immersions of parks and hydrophilic facilities located in the flood plain. Therefore it is necessary to analyze the hydraulic characteristics evolved by the extreme rain storm in the flood plain. The study reach ranging from the Gangjeong Goryeong Weir and the Dalseong Weir, where several hydraulic facilities are located along the channel, was selected and numerical simulations were conducted for 42 hours including the peak flood of the typhoon Sanba. The 2-D transient model, FaSTMECH was employed and the accuracy of the model was assessed by comparing the water level between the simulation results and the measured ones at a gauging station. It showed a high correlation with $R^2$ of 0.990, AME of 0.195, and RMSE of 0.252. In addition, the inundation time, the inundation depth, the inundation velocity, and the shear stress variation in the flood plain facilities were analyzed.

Unsteady 2-D flow field characteristics for perforated plates with a splitter

  • Yaragal, Subhash C.
    • Wind and Structures
    • /
    • v.7 no.5
    • /
    • pp.317-332
    • /
    • 2004
  • Wind tunnel experiments were conducted under highly turbulent and disturbed flow conditions over a solid/perforated plate with a long splitter plate in its plane of symmetry. The effect of varied level of perforation of the normal plate on fluctuating velocities and fluctuating pressures measured across and along the separation bubble was studied. The different perforation levels of the normal plate; that is 0%, 10%, 20%, 30%, 40% and 50% are studied. The Reynolds number based on step height was varied from $4{\times}10^3$ to $1.2{\times}10^4$. The shape and size of the bubble vary with different perforation level of the normal plate that is to say the bubble is reduced both in height and length up to 30% perforation level. For higher perforation of the normal plate, bubble is completely swept out. The peak turbulence value occurs around 0.7 to 0.8 times the reattachment length. The turbulence intensity values are highest for the case of solid normal plate (bleed air is absent) and are lowest for the case of 50% perforation of the normal plate (bleed air is maximum in the present study). From the analysis of data it is observed that $\sqrt{\overline{u^{{\prime}2}}}/(\sqrt{\overline{u^{{\prime}2}}})_{max}$, (the ratio of RMS velocity fluctuation to maximum RMS velocity fluctuation), is uniquely related with dimensionless distance y/Y', (the ratio of distance normal to splitter plate to the distance where RMS velocity fluctuation is half its maximum value) for all the perforated normal plates. It is interesting to note that for 50% perforation of the normal plate, the RMS pressure fluctuation in the flow field gets reduced to around 60% as compared to that for solid normal plate. Analysis of the results show that the ratio [$C^{\prime}_p$ max/$-C_{pb}(1-{\eta})$], where $C^{\prime}_p$ max is the maximum coefficient of fluctuating pressure, $C_{pb}$ is the coefficient of base pressure and ${\eta}$ is the perforation level (ratio of open to total area), for surface RMS pressure fluctuation levels seems to be constant and has value of about 0.22. Similar analysis show that the ratio $[C^{\prime}_p$ max/$-C_{pb}(1-{\eta})]$ for flow field RMS pressure fluctuation levels seems to be constant and has a value of about 0.32.

Finite Element Analysis for the Contact Stress of Ultra-high Molecular Weight Polyethylene in Total Knee Arthroplasty (전 슬관절 치환 성형술에 사용되는 초고분자량 폴리에틸렌 삽입물의 접촉응력에 관한 유한요소해석)

  • Jo, Cheol-Hyeong;Choe, Jae-Bong;Choe, Gwi-Won;Yun, Gang-Seop;Gang, Seung-Baek
    • Journal of Biomedical Engineering Research
    • /
    • v.20 no.1
    • /
    • pp.37-44
    • /
    • 1999
  • Because of bone resorption, wear of ultra-high molecular weight polyethylene(UHMWPE) in total knee arthroplasty has been recognized as a major factor in long-term failure of knee implant. The surface damage and the following harmful wear debris of UHMWPE is largely related to contact stress. Most of the previous studies focused on the contact condition only at the articulating surface of UHMWPE. Recently, contact stress at the metal-backing interface has been implicated as one of major factors in UHMWPE wear. Therefore, the purpose of the is study is to investigate the effect of the contact stress for different thickness, conformity friction coefficient, and flexion degree of the UHMWPE component in total knee system, considering the contact conditions at both interfaces. In this study, a two-dimensional non-linear plane strain finite element model was developed. The results showed that the maximum value of von-Mises stress occurred below the articulating surface and the contact stress was lower for the more conforming models. All-polyethylene component showed lower stress distribution than the metal-backed component. With increased friction coefficient on the tibiofemoral contact surface, the maximum shear stress increased about twofold.

  • PDF

Analysis of the crack propagation rules and regional damage characteristics of rock specimens

  • Li, Yangyang;Xu, Yadong;Zhang, Shichuan;Fan, Jing;Du, Guobin;Su, Lu;Fu, Guangsheng
    • Geomechanics and Engineering
    • /
    • v.24 no.3
    • /
    • pp.215-226
    • /
    • 2021
  • To study the evolution mechanism of cracks in rocks with multiple defects, rock-like samples with multiple defects, such as strip-shaped through-going cracks and cavity groups, are used, and the crack propagation law and changes in AE (acoustic emission) and strain of cavity groups under different inclination angles are studied. According to the test results, an increase in the cavity group inclination angle can facilitate the initial damage degree of the rock and weaken the crack initiation stress; the initial crack initiation direction is approximately 90°, and the extension angle is approximately 75~90° from the strip-shaped through-going cracks; thus, the relationship between crack development and cavity group initiation strengthens. The specific performance is as follows: when the initiation angle is 30°, the cracks between the cavities in the cavity group develop relatively independently along the parallel direction of the external load; when the angle is 75°, the cracks between the cavities in the cavity group can interpenetrate, and slip can occur along the inclination of the cavity group under the action of the shear mechanism rupture. With the increase in the inclination angle of the cavity group, the AE energy fluctuation frequency at the peak stress increases, and the stress drop is obvious. The larger the cavity group inclination angle is, the more obvious the energy accumulation and the more severe the rock damage; when the cavity group angle is 30° or 75°, the peak strain of the local area below the strip-shaped through-going fracture plane is approximately three times that when the cavity group angle is 45° and 60°, indicating that cracks are easily generated in the local area monitored by the strain gauge at this angle, and the further development of the cracks weakens the strength of the rock, thereby increasing the probability of major engineering quality damage. The research results will have important reference value for hazard prevention in underground engineering projects through rock with natural and artificial defects, including tunnels and air-raid shelters.

Types and Characteristics of Landslides in Danyang Geopark (단양 지질공원 내의 산사태 유형과 특징)

  • Seong-Woo Moon;Ho-Geun Kim;Yong-Seok Seo
    • The Journal of Engineering Geology
    • /
    • v.33 no.3
    • /
    • pp.427-438
    • /
    • 2023
  • We carried out a geological survey to classify the types of mass movement in Danyang Geopark (where various rock types are distributed) and analyzed the mechanical and hydraulic characteristics of landslide materials using a series of laboratory tests. Debris flows occurred in areas of limestone/marble, shale, and porphyroblastic gneiss, and limestone/marble landslides were distinguished from the others through the presence of karren topography. Soil tests showed that soil derived from weathered gneiss, which has a higher proportion of coarse grains, has a higher friction angle, lower cohesion, and larger hydraulic conductivity than soils from areas of limestone/marble, and shale. Rock failure mass movements occurred in areas of phyllite, sandstone, and conglomerate and were subdivided into plane failure, block-fall, and boulder-fall types in areas of phyllite, sandstone, and conglomerate, respectively. The shear strength of phyllite is much lower than that of the other types of rock, which have similar rock quality. The slake durability index of the conglomerate is similar to that of the other rock types, which have similar degrees of weathering, but differential weathering of the matrix and clasts was clearly observed when comparing the samples before and after the test. This study can help establish appropriate reinforcement and disaster prevention measures, which depend on the type of mass movement expected given the geological characteristics of an area.

A Case Study of Geometrical Fracture Model for Groundwater Well Placement, Eastern Munsan, Gyeonggido, Korea (지하수개발을 위한 단열모델 연구사례(경기도 문산 동쪽지역))

  • Choi Sung-Ja;Chwae Uee-Chan;Kim Se-Kon;Park Jun-Beom;Sung Ki-Sung;Sung Ik-Whan
    • Economic and Environmental Geology
    • /
    • v.39 no.2 s.177
    • /
    • pp.163-171
    • /
    • 2006
  • This study is the case of groundwater development based on the geometrical fracture model of target area established only through geological fracture mapping technique. A fracture mapping of $9km^2$, eastern Munsan, has been conducted to determine geological and hydrological factors for new water well placement in the Gyeonggi gneiss complex. Geophysical exploration was not applicable because of small restricted area and dense underground utilities at the site. Form line mapping on the basis of foliation orientation and rock type revealed a synform of NS fold axis bearing to the south. An EW geological cross-section passed through the site area shows a F2 synform as a double-wall ice cream spoon shape. Three regional faults of $N20^{\circ}E,\;N30^{\circ}W$, and NS have been dragged into the site to help understand extensional fault paths. The $N20^{\circ}E$ fault with dextral sense is geometrically interpreted as a western fault of two flexural conjugate type-P shear faults in the F2 synformal fold. The NE cross-section reveals that a possible groundwater belt in the western limb of super-posed fold area is formed as a trigonal prism within 100 m depth of the intersectional space between the $N20^{\circ}E$ fault plane and the weakly sheared plane of transposed foliation. Another possible fault for water resource strikes $N40^{\circ}E$. Recommended sites for new water well placement are along the $N20^{\circ}E\;and\;N40^{\circ}E$ faults. As a result of fracture mapping, 145 ton/day of water can be produced at one well along the $N20^{\circ}E$ fault line. Exploration of groundwater in the area is succeeded only using with geological fracture mapping and interpretation of geological cross-section, without any geophysical survey. Intersection of fault generated with the F2 synformal fold and foliation supply space of groundwater reserver.

EFFECT OF VARIOUS RESIN CEMENTS TO THE SHEAR BOND STRENGTH IN THE ADHESION BRIDGE (접착성가공의치에서 세멘트 종류가 전단결합강도에 미치는 영향)

  • Lee, Cheong-Hee
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.34 no.4
    • /
    • pp.791-799
    • /
    • 1996
  • The purpose of this study was to compare the shear bond strength of adhesion bridge by various resin cements. One hundred and foully 1st premolars were used. The teeth were cut below 2mm from CEJ and the coronal portions were used. The coronal portions were embeded with the acrylic resin and trimmed with sic paper until the flat plane with ${\phi}$ 4mm above acrylic resin sticks in height 5mm were casted with nonprecious metal and the using surfaces were treated with sic paper from #200 to #1200 and polished with alminum oxide paste. And then, the using surfaces were sandblasted and treated with the electrochemical etching. The teeth were divided into three groups of fourty two each. In group I, teeth and specimens were cemented with Panavia 21 In group II, teeth and specimens were cemented with Superbond In group I, teeth and specimens were cemented with All-Bond & composite resin cement Each group was subdivided into three subgroups according to the storage period ; one-day storage, fifteen-day storage, and thirty-day storage. The special jig was made. Then, the specimen and jig were mounted to Instron Universal Testing Machine and the failure were measured. The results were as follows. 1. There was statisfically significant difference between the failure loads of group I and group II and III after one day storage(P<0.01), 2. There was statisfically significant difference between the failure loads of group II and group I and III and between group I and group III at fifteen day storage(P<0.01). 3. There was statisfically significant difference between the failure loads of group I and II and group III after thirty day storage(P<0.01). 4. There was statisfically significant difference between the failure loads of one day storage and fifteen and thirty days storages in group III (P<0.01).

  • PDF

Palaeomagnetism of the Okchon Belt, Korea : Anisotropy of Magnetic Susceptibility (AMS) and Deformation of the Hwanggangri Formation in Chumgju-Suanbo Area (옥천대에 대한 고자기 연구:충주-수안보 일원 황강리층의 변형과 대자율 비등방성(AMS))

  • Son, Moon;Kim, In-Soo;Kang, Hee-Cheol
    • Economic and Environmental Geology
    • /
    • v.34 no.1
    • /
    • pp.133-146
    • /
    • 2001
  • We report the results of structural field observation and measurement of anisotropy of magnetic susceptibility (AMS) of the diamictitic Hwanggangri Formation distributed in Chungju-Suanbo area of the Okchon Belt, Korea. The outcrops of the Hwanggangri Formation show two types of cleavage in general: slaty cleavage (SI) and crenulation cleavage (5z). 5] cleavage is, however, well observable only in the notheastem (NE) part of study area, while overwhelmed by 52 cleavage in the southwestern (5W) part, indicating stronger later deformation in 5W part of the study area. This partitioning of the study area is corroborated by both IRM and AMS parameters: NE part of the study area is characterized by higher IRM intensity, higher bulk magnetic susceptibility, higher AM5 degree, and by oblate shape of magnetic susceptibility ellipsoid. Their values become drastically lowered toward southwest, and reach to a stable minimum in the whole 5W part of the study area. In addition, degree of both metamorphism and deformation tends to increase gradually from northeast toward southwest and also from northwest toward southeast in the study area. Based on the distribution pattern of the principal axes ( $k_1, k_2, k_3$ axes) of magnetic anisotropy ellipsoids revealed in the NE part of the study area, three episodes of deformation ( $D_1, D_2, D_3$ ) are recognized: D_1$ deformation produced $S_2$ cleavage with NE-5W trend, which is caused by a strong NW-SE tlattening of a coaxial pure shear. $D_2$ deformation produced 5z cleavage characterized by a non-coaxial deformation. It was caused by a ductile or semi-ductile thrusting toward NW and concurrent sinistral shearing along $S_2$ cleavage plane. Lastly, $D_3$ deformation produced tlexural folding of all previous structures with a nearly horizontal NE fold axis. Distribution pattern of the principal axes of magnetic anisotropy ellipsoid from the SW part of the study area, on the other hand, does not show any coherency among sites or samples. We interpret that this dispersed pattern of $k_1, k_2, k_3$ axes together with lower anisotropy strength indicates that magnetic fabrics in the SW part have been disturbed either by a superposition of strong deformation/metamorphism or by a kind of reciprocal strain due to an overlapping of $D_1$ and $D_2$ or by both processes.

  • PDF