• Title/Summary/Keyword: shear localization

Search Result 72, Processing Time 0.066 seconds

Estimation of Local Strain Distribution of Shear-Compressive Failure Type Beam Using Digital Image Processing Technology (화상계측기법에 의한 전단압축파괴형 보의 국부변형률분포 추정)

  • Kwon, Yong-Gil;Han, Sang-Hoon;Hong, Ki-Nam
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.2
    • /
    • pp.121-127
    • /
    • 2009
  • The failure behavior of RC structure was exceedingly affected by the size and the local strain distribution of the failure zone due to the strain localization behavior on the tension softening materials. However, it is very difficult to quantify and assess the local strain occurring in the failure zone by the conventional test method. In this study, image processing technology, which is available to measure the strain up to the complete failure of RC structures, was used to estimate the local strain distribution and the size of failure zone. In order to verify the reliability and validity for the image processing technology, the strain transition acquired by the image processing technology was compared with strain values measured by the concrete gauge on the uniaxial compressive specimens. Based on the verification of image processing technology for the uniaxial compressive specimens, the size and the local strain distribution of the failure zone of deep beam was measured using the image processing technology. With the results of test, the principal tensile/compressive strain contours were drawn. Using the strain contours, the size of the failure zone and the local strain distribution on the failure of the deep beam was evaluated. The results of strain contour showed that image processing technology is available to assess the failure behavior of deep beam and obtain the local strain values on the domain of the post-peak failure comparatively.

A Study on the Genesis of Fluorite Deposits of South Korea (남한(南韓)의 형석광상(螢石鑛床)의 성인(成因)에 관(關)한 연구(硏究))

  • Chi, Jeong Mahn
    • Economic and Environmental Geology
    • /
    • v.8 no.1
    • /
    • pp.25-56
    • /
    • 1975
  • Most fluorite deposits of South Korea are distributed in three metallogenic zones namly as: Hwacheon, Hwangangni and Geumsan metallogenic zones. Fluorite deposits of each zone show The characteristic features owing to the geological setting, the structural patterns and their forming processes. deposits of the Hwacheon metallogenic zone are wholly fissure filling hydrothermal veins emThe bedded in shear fractures of the granite gneiss or schists of Precambrian age or in the cooling fractures of the granite and acidic hypabyssal rocks which are assumed to be a differentiated sister rock of the granite. Localization of most fluorite veins of the region is structurally controlled by NW and EW fracture systems and genetically related to the granite intrusion which ascertained as motivating rock of the fluorite mineralization. Fluorites are in most cases accompanied by quartz, chalcedony mainly and rarely agate, calcite, barite and sulphide base metals in some localities. The deposits of the Hwangangni metallogenic zone were formed at the last stage of hydrothermal polymineralization of W, Mo, Cu, Pb, Zn. The majority of the fluorite ore bodies were originated from replacement in limestone beds of Great Limestone Series or in calcareous interbeds of metasediments, whereas some cavity-filling ore bodies were embedded in phyllites and schists of the Ockcheon system and along the fissures in the replaced beds which were originated by volume decrease. The localization of fluorite deposits in this region is genetically related to the Moongyong granite which has been dated as middle Cretaceous, and controlled structurally by the $N20^{\circ}{\sim}50^{\circ}W$ extension fracture system or axial planes of folds, and by faults of NE direction that acted as paths of ore solution. The deposits of the Geumsan metallogenic zone are seemed to be formed through the similar process as that of Hwangangni metallogenic zone, but characteristic distinctions are in that they are more prevailing fracture filling veins and large number of the deposits are localized in roof-pendants or xenolithes of limestone in granites and porphyries. Igneous rocks that presumably motivated the mineraltzation are middle Cretaceous Geumsan granite and porphyries. Metallogenic epoch of the fluorite mineralization of South Korea are puesumably limited in early-middle Cretaceous. Studies of the fluid inclusions in fluorites of the region reveal that the homogenization temperature of the fluorite deposits are as follows: Hwacheon metallogenic zone : $95^{\circ}C{\sim}165^{\circ}C$; Hwangangni metallogenic zone : $97^{\circ}C{\sim}235^{\circ}C$; Geumsan metallogenic zone : $93^{\circ}C{\sim}236^{\circ}C$. Judging from the above results, the deposits of the Hwancheon region were formed at the epithermal stage, and those in the Hwangangni and Geumsan regions, were deposited at epithermal stage preceded by mesothermal mineralization of small scale in which some sulphide minerals were deposited. The analytical data of minor elements in the fluorites reveal that ore solutions of Hwangangni metallogenic zone seemed to be emanated in more acidic stage of magma differentiation than Hwacheon metallogenic zone did.

  • PDF