• 제목/요약/키워드: shear load-slip relationship

검색결과 23건 처리시간 0.021초

Intermediate crack-induced debonding analysis for RC beams strengthened with FRP plates

  • Wantanasiri, Peelak;Lenwari, Akhrawat
    • Structural Engineering and Mechanics
    • /
    • 제56권3호
    • /
    • pp.473-490
    • /
    • 2015
  • This paper presents the analysis of intermediate crack-induced (IC) debonding failure loads for reinforced concrete (RC) beams strengthened with adhesively-bonded fiber-reinforced polymer (FRP) plates or sheets. The analysis consists of the energy release and simple ACI methods. In the energy release method, a fracture criterion is employed to predict the debonding loads. The interfacial fracture energy that indicates the resistance to debonding is related to the bond-slip relationships obtained from the shear test of FRP-to-concrete bonded joints. The section analysis that considers the effect of concrete's tension stiffening is employed to develop the moment-curvature relationships of the FRP-strengthened sections. In the ACI method, the onset of debonding is assumed when the FRP strain reaches the debonding strain limit. The tension stiffening effect is neglected in developing a moment-curvature relationship. For a comparison purpose, both methods are used to numerically investigate the effects of relevant parameters on the IC debonding failure loads. The results show that the debonding failure load generally increases as the concrete compressive strength, FRP reinforcement ratio, FRP elastic modulus and steel reinforcement ratio increase.

비선형 유한요소 해석에 의한 강봉 트러스 시스템으로 보강된 조적벽체의 내진거동 평가 (Evaluation of Seismic Response of Masonry Walls Strengthened with Steel-bar Truss Systems by Non-linear Finite Element Analysis)

  • 황승현;양근혁;김상희;임진선;임채림
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제25권4호
    • /
    • pp.20-27
    • /
    • 2021
  • 이 연구에서는 강봉 트러스 시스템으로 보강된 조적벽체의 내진거동을 합리적으로 평가하기 위하여 범용프로그램인 Abaqus를 이용한 비선형 유한요소해석 절차를 제시하였다. 조적벽체의 유한요소 모델은 콘크리트 손상 소성(concrete damaged plasticity, CDP)모델 및 벽돌-모르타르 계면 특성은 Yang et al.이 제시한 조적 프리즘의 압축 및 인장의 응력-변형률 모델과 전단마찰모델을 기반으로 메소-스케일법을 적용하였다. 유한요소 해석결과를 다양한 변수조건에서 실험결과와 비교한 결과, 강봉 트러스 시스템으로 보강된 조적벽체의 균열진전, 파괴 모드, 강체회전 내력 및 최대내력 그리고 횡하중-횡변위 관계에 대한 실험결과와 잘 일치하였다. 따라서 제시된 유한요소해석 절차는 조적벽체의 내진보강 설계에 합리적으로 이용될 수 있다고 판단된다.

Analysis of the crack propagation rules and regional damage characteristics of rock specimens

  • Li, Yangyang;Xu, Yadong;Zhang, Shichuan;Fan, Jing;Du, Guobin;Su, Lu;Fu, Guangsheng
    • Geomechanics and Engineering
    • /
    • 제24권3호
    • /
    • pp.215-226
    • /
    • 2021
  • To study the evolution mechanism of cracks in rocks with multiple defects, rock-like samples with multiple defects, such as strip-shaped through-going cracks and cavity groups, are used, and the crack propagation law and changes in AE (acoustic emission) and strain of cavity groups under different inclination angles are studied. According to the test results, an increase in the cavity group inclination angle can facilitate the initial damage degree of the rock and weaken the crack initiation stress; the initial crack initiation direction is approximately 90°, and the extension angle is approximately 75~90° from the strip-shaped through-going cracks; thus, the relationship between crack development and cavity group initiation strengthens. The specific performance is as follows: when the initiation angle is 30°, the cracks between the cavities in the cavity group develop relatively independently along the parallel direction of the external load; when the angle is 75°, the cracks between the cavities in the cavity group can interpenetrate, and slip can occur along the inclination of the cavity group under the action of the shear mechanism rupture. With the increase in the inclination angle of the cavity group, the AE energy fluctuation frequency at the peak stress increases, and the stress drop is obvious. The larger the cavity group inclination angle is, the more obvious the energy accumulation and the more severe the rock damage; when the cavity group angle is 30° or 75°, the peak strain of the local area below the strip-shaped through-going fracture plane is approximately three times that when the cavity group angle is 45° and 60°, indicating that cracks are easily generated in the local area monitored by the strain gauge at this angle, and the further development of the cracks weakens the strength of the rock, thereby increasing the probability of major engineering quality damage. The research results will have important reference value for hazard prevention in underground engineering projects through rock with natural and artificial defects, including tunnels and air-raid shelters.