• 제목/요약/키워드: shear interaction

검색결과 701건 처리시간 0.035초

구조물-지반 상호작용 영향을 고려한 새로운 지반계수 평가방법에 대한 제안 (Proposed New Evaluation Method of the Site Coefficients Considering the Effects of the Structure-Soil Interaction)

  • 김용석
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2006년도 학술발표회 논문집
    • /
    • pp.327-336
    • /
    • 2006
  • Site coefficients in IBC and KBC codes have some limits to predict the rational seismic responses of a structure, because they consider only the effect of the soil amplification without the effects of the structure-soil interaction. In this study, upper and lower limits of site coefficients are estimated through the pseudo 3-D elastic seismic response analyses of structures built on linear or nonlinear soil layers considering the structure-soil interaction effects. Soil characteristics of site classes of A, B, and C were assumed to be linear, and those of site classes of D and E were done to be nonlinear and the Ramberg-Osgood model was used to evaluate shear modulus and damping ratio of a soil layer depending on the shear wave velocity of a soil layer. Seismic analyses were performed with 12 weak or moderate earthquake records, scaled the peak acceleration to 0.1g or 0.2g and deconvoluted as earthquake records at the bedrock 30m beneath the outcrop. With the study results of the elastic seismic response analyses of structures, new standard response spectrum and upper and lower limits of the site coefficients of Fa and Fv at the short period range and the period of 1 second are suggested Including the structure-soil interaction effects.

  • PDF

Seismic control of concrete buildings with nonlinear behavior, considering soil structure interaction using AMD and TMD

  • Mortezaie, Hamid;Zamanian, Reza
    • Structural Engineering and Mechanics
    • /
    • 제77권6호
    • /
    • pp.721-734
    • /
    • 2021
  • The seismic analysis of structures without applying the effects of soil can undermine functional objectives of structure so that it can affect all the desired purposes at the design and control stages of the structure. In this research, employing OpenSees and MATLAB software simultaneously and developing a definite three-dimensional finite element model of a high-rise concrete structure, designed using performance-based plastic design approach, the performance of Tuned Mass Damper (TMD) and Active Mass Damper (AMD) is both examined and compared. Moreover some less noted aspects such as nonlinear interaction of soil and structure, uplift, nonlinear behavior of structure and structural torsion have received more attention. For this purpose, the analysis of time history on the structural model has been performed under 22 far-field accelerogram records. Examining a full range of all structural seismic responses, including lateral displacement, acceleration, inter-story drift, lost plastic energy, number of plastic hinges, story shear force and uplift. The results indicate that TMD performs better than AMD except for lateral displacement and inter-story drift to control other structural responses. Because on the one hand, nonlinear structural parameters and soil-structure interaction have been added and on the other hand, the restriction on the control force applied that leads up to saturation phenomenon in the active control system affect the performance of AMD. Moreover, the control force applied by structural control system has created undesirable acceleration and shear force in the structure.

A new approach on soil-structure interaction.

  • Gilbert, C.
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2002년도 봄 학술발표회 논문집
    • /
    • pp.101-110
    • /
    • 2002
  • This article summarises the traditional method of soil-structure interaction based on the modulus of subgrade reaction and shows its weakness. In order to avoid these weakness, a new soil-structure interaction model is proposed. This model considers the soil as a set of connected springs which enables interaction between springs. Its use is as simple as the traditional model but allows to define the soil properties independently from the structural properties and the loading conditions. Thus, the definition of the modulus of subgrade reaction is unnecessary as each component is defined by its own modulii (Young's modulus and shear modulus). The non-linear soil behaviour for the shear stress versus distortion is also incorporated in the model. This feature allows to pinpoint the arching effect in the ground and shows how the stresses concentrate on stiff materials. Based on these principles, three dimensional program has been developed in order to solve the difficult problem of soil improvement by inclusions (stiff or soft). Also the possibility to take into account a flexible mat and/or a subgrade layer has been implemented. Equations used in the model are developed and a parametric study of the necessary data used in the program is presented. In particular, the Westergaard modulus notion and the arching effect are analysed.

  • PDF

Effect of shear wall location in rigid frame on earthquake response of roof structure

  • Ishikawa, Koichiro;Kawasaki, Yoshizo;Tagawa, Kengo
    • Structural Engineering and Mechanics
    • /
    • 제11권6호
    • /
    • pp.605-616
    • /
    • 2001
  • The purpose of this study is to investigate the effect of the shear wall location in rigid frames on the dynamic behavior of a roof structure due to vertical and horizontal earthquake motions. The study deals with a gabled long span beam supported by two story rigid frames with shear walls. The earthquake response analysis is carried out to study the responses of the roof: vibration mode, natural period, bending moment and horizontal shear force of the bearings. The study results in the following conclusions: First, a large horizontal stiffness difference between the side frames is caused by the shear wall location, which results in a large vertical vibration of the roof and a large shear force at the side bearings. Second, in this case, the seismic design method for ordinary buildings is not useful in determining the distribution of the static equivalent loads for the seismic design of this kind of long span structures.

횡보강근이 없는 콘크리트 부재의 전단강도 (Shear Strength of Concrete Members without Transverse Steel)

  • 김장훈
    • 콘크리트학회논문집
    • /
    • 제12권6호
    • /
    • pp.57-66
    • /
    • 2000
  • The truss analogy for the analysis of beam-columns subjected of shear and flexure is limited by the contribution of transverse and longitudinal steel and diagonal concrete compression struts. However, it should be noted that even though the behavior of reinforced concrete beam-columns after cracking can be modeled with the truss analogy, they are not perfect trusses but still structural elements with a measure of continuity provided by a diagonal tension field. The mere notion of compression field denotes that there should be some tension field coexisting perpendicularly to it. The compression field is assumed to form parallel to the crack plane that forms under combined flexure and shear. Therefore, the concrete tension field may be defined as a mechanism existing across the crack and resisting crack opening. In this paper, the effect of concrete tensile properties on the shear strength and stiffness of reinforced concrete beam-columns is discussed using the Gauss two-point truss model. The theoretical predictions are validated against the experimental observations. Although the agreement is not perfect, the comparison shows the correct trend in degradation as the inelasticity increases.

매립형 불완전 합성보의 휨 거동 예측 (Flexural Behavior of Encased Composite Beams with Partial Shear Interaction)

  • 허병욱;배규웅;문태섭
    • 한국강구조학회 논문집
    • /
    • 제16권6호통권73호
    • /
    • pp.747-757
    • /
    • 2004
  • 강-콘크리트 합성보에서 강과 콘크리트 사이의 불완전 합성거동은 완전 합성보에 비해서 처짐이 매우 증가하게 된다. 특히, 춤이 깊은 데크 및 속 빈 PC슬래브 등을 사용한 매립형 합성보의 경우, 자체의 형상에 기인하여 처짐에 매우 취약하다. 본 연구에서는 기존 연구에서 유도한 슬립효과를 고려한 처짐 계산법 및 실험으로부터 구한 하중-슬립 관계로부터 매립형 합성보의 전단부착응력 및 슬립에 의한 추가 처짐 값을 제시하였다. 매립형 합성보의 처짐에 미치는 슬립의 영향은 완전 합성보의 강성 값에 비해 약 30%정도 감소함을 알 수 있었다. 또한, 실험 및 예측 값의 비교결과, 6%내외의 오차로 비교적 좋은 결과를 나타내었다.

유체-고체 상호작용 (FSI)기법을 이용한 이엽기계식 인공심장판막을 지나는 혈액유동과 판첨거동에 관한 수치해석적 연구 (Numerical Study on the Pulsatile Blood Flow through a Bileaflet Mechanical Heart Valve and Leaflet Behavior Using Fluid-Structure Interaction (FSI) Technique)

  • 최청렬;김창녕
    • 한국유체기계학회 논문집
    • /
    • 제7권3호
    • /
    • pp.14-22
    • /
    • 2004
  • Bileaflet mechanical valves have the complications such as hemolysis and thromboembolism, leaflet damage, and leaflet break. These complications are related with the fluid velocity and shear stress characteristics of mechanical heart valves. The first aim of the current study is to introduce fluid-structure interaction method for calculation of unsteady and three-dimensional blood flow through bileaflet valve and leaflet behavior interacted with its flow, and to overcome the shortness of the previous studies, where the leaflet motion has been ignored or simplified, by using FSI method. A finite volume computational fluid dynamics code and a finite element structure dynamics code have been used concurrently to solve the flow and structure equations, respectively, to investigate the interaction between the blood flow and leaflet. As a result, it is observed that the leaflet is closing very slowly at the first stage of processing but it goes too fast at the last stage. And the results noted that the low pressure is formed behind leaflet to make the cavitation because of closing velocity three times faster than opening velocity. Also it is observed some fluttering phenomenon when the leaflet is completely opened. And the rebounce phenomenon due to the sudden pressure change of before and after the leaflet just before closing completely. The some of time-delay is presented between the inversion point of ventricle and aorta pressure and closing point of leaflet. The shear stress is bigger and the time of exposure is longer when the flow rate is maximum. So it is concluded that the distribution of shear stress at complete opening stage has big effect on the blood damage, and that the low-pressure region appeared behind leaflet at complete closing stage has also effect on the blood damage.

Nonlinear analysis of composite beams with partial shear interaction by means of the direct stiffness method

  • Ranzi, G.;Bradford, M.A.
    • Steel and Composite Structures
    • /
    • 제9권2호
    • /
    • pp.131-158
    • /
    • 2009
  • This paper presents a modelling technique for the nonlinear analysis of composite steel-concrete beams with partial shear interaction. It extends the applicability of two stiffness elements previously derived by the authors using the direct stiffness method, i.e. the 6DOF and the 8DOF elements, to account for material nonlinearities. The freedoms are the vertical displacement, the rotation and the slip at both ends for the 6DOF stiffness element, as well as the axial displacement at the level of the reference axis for the 8DOF stiffness element. The solution iterative scheme is based on the secant method, with the convergence criteria relying on the ratios of the Euclidean norms of both forces and displacements. The advantage of the approach is that the displacement and force fields of the stiffness elements are extremely rich as they correspond to those required by the analytical solution of the elastic partial interaction problem, thereby producing a robust numerical technique. Experimental results available in the literature are used to validate the finite element proposed in the paper. For this purpose, those reported by Chapman and Balakrishnan (1964), Fabbrocino et al. (1998, 1999) and Ansourian (1981) are utilised; these consist of six simply supported beams with a point load applied at mid-span inducing positive bending moment in the beams, three simply supported beams with a point load applied at mid-span inducing negative bending moment in the beams, and six two-span continuous composite beams respectively. Based on these comparisons, a preferred degree of discretisation suitable for the proposed modelling technique expressed as a function of the ratio between the element length and depth is proposed, as is the number of Gauss stations needed. This allows for accurate prediction of the nonlinear response of composite beams.

3D seismic assessment of historical stone arch bridges considering effects of normal-shear directions of stiffness parameters between discrete stone elements

  • Cavuslu, Murat
    • Structural Engineering and Mechanics
    • /
    • 제83권2호
    • /
    • pp.207-227
    • /
    • 2022
  • In general, the interaction conditions between the discrete stones are not taken into account by structural engineers during the modeling and analyzing of historical stone bridges. However, many structural damages in the stone bridges occur due to ignoring the interaction conditions between discrete stones. In this study, it is aimed to examine the seismic behavior of a historical stone bridge by considering the interaction stiffness parameters between stone elements. For this purpose, Tokatli historical stone arch bridge was built in 1179 in Karabük-Turkey, is chosen for three-dimensional (3D) seismic analyses. Firstly, the 3D finite-difference model of the Tokatli stone bridge is created using the FLAC3D software. During the modeling processes, the Burger-Creep material model which was not used to examine the seismic behavior of historical stone bridges in the past is utilized. Furthermore, the free-field and quiet non-reflecting boundary conditions are defined to the lateral and bottom boundaries of the bridge. Thanks to these boundary conditions, earthquake waves do not reflect in the 3D model. After each stone element is modeled separately, stiffness elements are defined between the stone elements. Three situations of the stiffness elements are considered in the seismic analyses; a) for only normal direction b) for only shear direction c) for both normal and shear directions. The earthquake analyses of the bridge are performed for these three different situations of the bridge. The far-fault and near-fault conditions of 1989 Loma Prieta earthquake are taken into account during the earthquake analyses. According to the seismic analysis results, the directions of the stiffness parameters seriously changed the earthquake behavior of the Tokatli bridge. Moreover, the most critical stiffness parameter is determined for seismic analyses of historical stone arch bridges.

Ultimate strength of composite structure with different degrees of shear connection

  • Kim, Sang-Hyo;Jung, Chi-Young;Ahn, Jin-Hee
    • Steel and Composite Structures
    • /
    • 제11권5호
    • /
    • pp.375-390
    • /
    • 2011
  • Composite beam, which combined the material characteristic of the steel and concrete, has been widely used in the construction of various building and bridge system. For the effective application of the composite beam, the composite action on the composite interface between the concrete element and the steel element should be achieved by shear connectors. The behavioral characteristics of composite beam are related with the degree of interaction and the degree of shear connection according to the shear strength and shear stiffness of the stud shear connectors. These two concepts are also affected by the number of installed shear connector and the strength of composite materials. In this study, experimental and analytical evaluations of the degree of shear connection affected by stud diameter were conducted, and the relationship between structural behavior and the degree of shear connection was verified. The very small difference among the ultimate loads of the specimens depending on the change of the degree of connection was possibly because of the dependence of the ultimate load on the characteristic of plastic moment of the composite beam.