• Title/Summary/Keyword: shear flow

Search Result 1,886, Processing Time 0.031 seconds

Development of An Integrated Optimal Design Program for Design of A High-Efficiency Low-Noise Regenerative Fan (재생형 송풍기의 고효율 저소음 설계를 위한 통합형 최적설계 프로그램 개발)

  • Heo, Man-Woong;Kim, Jin-Hyuk;Seo, Tae-Wan;Koo, Gyoung-Wan;Lee, Chung-Suk;Kim, Kwang-Young
    • The KSFM Journal of Fluid Machinery
    • /
    • v.17 no.1
    • /
    • pp.35-40
    • /
    • 2014
  • A multi-objective optimization of a regenerative fan for enhancing the aerodynamic and aeroacoustic performance was carried out using an integrated fan design system, namely, Total FAN-Regen$^{(R)}$. The Total FAN-Regen$^{(R)}$ was developed for non-specialists to carry out a series of design process, viz., computational preliminary design, three-dimensional aerodynamic and aeroacoustic analyses, and design optimization, for a regenerative fan. An aerodynamic analysis of the regenerative fan was conducted by solving three-dimensional Reynolds-averaged Navier-Stokes equations using the shear stress transport turbulence model. And, an aeroacoustic analysis of the regenerative fan was implemented in a finite/infinite element method by solving the variational formulation of Lighthill's analogy based on the results of the unsteady flow analysis. An optimum shape obtained by Total FAN-Regen$^{(R)}$ shows the enhanced efficiency and decreased sound pressure level as much as 1.5 % and 20.0 dB, respectively, compared to those of the reference design. The performance test was carried out for an optimized regenerative fan to validate the performance of the numerically predicted optimal design.

Printing Properties of Ag Paste with the Variation of Binder on the SiNx Coated Si Wafer (SiNx 층이 코팅된 Si Wafer에 바인더 종류에 따른 Ag 페이스트의 인쇄 특성)

  • Kang, Jea Won;Shin, Hyo Soon;Yeo, Dong Hun;Jeong, Dae Yong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.2
    • /
    • pp.85-90
    • /
    • 2014
  • Ag paste has been used in the front electrode of the Si-solar cell. It is composed by Ag powder, glass frit, binder, solvent and dispersant. The role of the binder and the solvent is to make a flow and a printing property. However, it was not enough to report the printing properties with the variation of binder in the controled viscosity. In this study, we selected 3 kinds of typical binder which were used as binder for the paste in the industry, such as Ethyl cellulose, Hydroxypropyl cellulose and Acrylic. Ag pastes using these were prepared, controled viscosity and printed on the SiNx coated Si wafer. In the 'A paste' used Acrylic binder, printed hight was highest and 'H paste' used Hydroxypropyl cellulose binder was lowest. Because 'H paste' was high viscosity due to the molecular weight, the solvent was added in the paste to control the viscosity. Therefore, the content of solid was lower in 'H paste'. The relative pattern width which is related to the spreading of paste was the best in the case of 'H paste' and 'EH paste' at $30^{\circ}C$. It is thought that the optimization of the relative pattern width is possible for a paste by the controling shear thinning phenomenon. In the case of 'A paste', though printing hight was best, the pattern width was dependant on the temperature.

The Effect of Gas Thermochemical Model on the Flowfield of Supersonic Rocket in Propulsive Flight (기체 열화학 모델이 연소 비행하는 초음속 로켓 유동장에 미치는 영향)

  • 최환석
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.6 no.1
    • /
    • pp.12-20
    • /
    • 2002
  • An integrated analysis of kerosine/LOX based KSR-III rocket body/plume flowfield has been performed. The analysis has been executed employing three kind of gas thermo-chemical models including calorically perfect gas, multiple species chemically reacting gas, and chemically frozen gas models and their effect on rocket flowfield has been accessed to provide the most appropriate gas thermo-chemical model which meets a specific purpose of performing rocket body and plume analysis. The finite-rate chemically reacting flow solution exhibited higher temperature throughout the flowfield than other gas models due to the increased combustion gas temperature caused by the chemical reactions within the nozzle. All the reactions were dominated only in the shear layer and behind the barrel shock reflection region where the gas temperature is high and the effect of finite-rate chemical reactions on the flowfield was found to be minor. However, the present plume computation including finite-rate chemical reactions revealed major reactions occurring in the plume and their reaction mechanisms and as well.

Liquefaction Prevention and Damage Reduction Effect of Reinforcement by Sheet Pile Using 1-G Shaking Table Test (1-G 진동대 실험을 이용한 시트파일 보강재의 액상화 및 피해 방지 효과)

  • Sim, Sung Hun;Yoon, Jong Chan;Son, Su Won;Kim, Jin Man
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.24 no.5
    • /
    • pp.211-217
    • /
    • 2020
  • Earthquake preparedness has become more important with recent increase in the number of earthquakes in Korea, but many existing structures are not prepared for earthquakes. There are various types of liquefaction prevention method that can be applied, such as compaction, replacement, dewatering, and inhibition of shear strain. However, most of the liquefaction prevention methods are applied before construction, and it is important to find optimal methods that can be applied to existing structures and that have few effects on the environment, such as noise, vibration, and changes in underground water level. The purpose of this study is to estimate the correlation between the displacement of a structure and variations of pore water pressure on the ground in accordance with the depth of the sheet file when liquidation occurs. To achieve this, a shaking table test was performed for Joo-Mun-Jin standard sand and an earth pressure, accelerometer, pore water pressure transducer, and LVDT were installed in both the non-liquefiable layer and the liquefiable layer to measure the subsidence and excess pore water pressure in accordance with the time of each embedded depth. Then the results were analyzed. A comparison of the pore water pressure in accordance with Hsp/Hsl was shown to prevent lateral water flow at 1, 0.85 and confirmed that the pore water pressure increased. In addition, the relationship between Hsp/Hsl and subsidence was expressed as a trend line to calculate the expected settlement rate formula for the embedded depth ratio.

Deposition Behavior and Microstructure of Fe-based Amorphous Alloy Fabricated by Vacuum Kinetic Spraying Process (진공 저온 분사 공정을 통해 형성된 Fe계 비정질 재료의 적층거동 및 미세구조 변화 관찰)

  • Kwon, Juhyuk;Park, Hyungkwon;Lee, Illjoo;Lee, Changhee
    • Korean Journal of Materials Research
    • /
    • v.24 no.1
    • /
    • pp.60-65
    • /
    • 2014
  • Fe-based amorphous coatings were fabricated on a soda-lime glass substrate by the vacuum kinetic spray method. The effect of the gas flow rate, which determines particle velocity, on the deposition behavior of the particle and microstructure of the resultant films was investigated. The as-fabricated microstructure of the film was studied by field emission scanning electron microscopy (FE-SEM) and high resolution transmission electron microscopy (HR-TEM). Although the activation energy for transformation from the amorphous phase to crystalline phase was lowered by severe plastic deformation and particle fracturing under a high strain rate, the crystalline phases could not be found in the coating layer. Incompletely fractured and small fragments 100~300 nm in size, which are smaller than initial feedstock material, were found on the coating surface and inside of the coating. Also, some pores and voids occurred between particle-particle interfaces. In the case of brittle Fe-based amorphous alloy, particles fail in fragmentation fracture mode through initiation and propagation of the numerous small cracks rather than shear fracture mode under compressive stress. It could be deduced that amorphous alloy underwent particle fracturing in a vacuum kinetic spray process. Also, it is considered that surface energy caused by the formation of new surfaces and friction energy contributed to the bonding of fragments.

Study on a Shape Deformation of Water Meniscus for the Rectangular and Circular Tips Moving Horizontally (사각 및 원형 팁의 횡운동에 의한 물 메니스커스 형상변화에 관한 연구)

  • Kim, Sang-Sun;Son, Sung-Wan;Ha, Man-Yeong;Yoon, Hyun-Sik;Kim, Hyung-Rak
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.12
    • /
    • pp.843-851
    • /
    • 2011
  • A two-dimensional immiscible water meniscus deformation phenomena on a moving tip in a channel has been investigated by using lattice Boltzmann method involving two-phase model. We studied the behavior of a water meniscus between the tip and a solid surface. The contact angles of the tip and a solid surface considered are in the range from $10^{\circ}$ to $170^{\circ}$. The velocity of the tip used in the study are 0.01, 0.001, and 0.0001. The shapes of tip considered are rectangular and circular. The behavior of water confined between the tip and a solid surface depends on the contact angles of the tip and a solid surface, and the tip velocity. When the tip is moving, we can observe the various behaviors of shear deformation of a water meniscus. As time goes on, the behavior of a water meniscus can be classified into three different patterns which are separated from the tip or adhered to the tip or sticked to a solid surface according to the contact angles and the tip velocity.

Effects of Baffle Structure Variation on Heat Transfer Performance in a Shell-Tube Heat Exchanger (배플 구조변경이 Shell-Tube 열교환기의 열전달성능에 미치는 영향)

  • Hou, Rong-Rong;Cho, Joeng-Kwon;Yoon, Jun-Kyu;Lim, Jong-Han
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.5
    • /
    • pp.3014-3021
    • /
    • 2015
  • Shell-tube heat exchanger is widely applied in industrial field by easily manufacturing as to various size and flow patterns. In this study, by changing baffle's cut direction, tilt angle and rotational angle as well as by using SST (Shear Stress Transport) $k-{\omega}$ turbulence model in ANSYS FLUENT v.14, the heat transfer rate and pressure drop characteristics of inner shell will be analyzed to improve heat transfer ability. As a result of analysis, heat transfer performance according to cut direction of baffle has been improved with vertical model B and angle $45^{\circ}$ model C than horizontal model A. In addition, the tilt $10^{\circ}$ of the baffle and rotational angle $0^{\circ}-90^{\circ}-180^{\circ}-270^{\circ}$ of model D showed better result in heat transfer rate and pressure drop.

Riparian Environment Change and Vegetation Immigration in Sandbar after Sand Mining (골채채취 후 수변환경 변화와 사주 내 식생이입)

  • Kong, Hak-Yang;Kim, Semi;Lee, Jaeyoon;Lee, Jae-An;Cho, Hyungjin
    • Journal of Korean Society on Water Environment
    • /
    • v.32 no.2
    • /
    • pp.135-141
    • /
    • 2016
  • This study investigated changes of hydrology, soil characteristics, riparian vegetation communities, and geomorphology in sandbars before and after sand-mining to determine the effect of sand-mining at upstream of Guemgang and Bochungcheon streams in Korea. Sand-mining events affected the mining area. They supplied organic matters and nutrients during flood. Sediment deposition caused soil texture change and expansion of vegetation area. However, riverbeds were stabilized after the disturbance. According to the analyses of aerial photographs, the vegetation area was significantly expanded in both dam-regulated streams and dam-unregulated streams after sand-mining. Willow shrubs advanced in disturbed area at an average of 10 years after sand-mining. It took willows trees 10.6 years to become dominant communities. Therefore, it took a total of 20.6 years for new riparian forest to form in sandbar after sand-mining. Our results confirmed that stream flow condition were dependent on vegetation recruitment in dam-regulated streams and dam-unregulated streams. For willow recruitment in unregulated streams, calculation of water level below dimensionless bed shear stress is important because low water level variation is a limiting factor of vegetation recruitment.

Bedform Distribution and Sand Transport Trend on a Subtidal Sand Ridge in a Macrotidal Bay, West Coast of Korea

  • Park, Soo-Chul;Yoo, Dong-geun
    • Journal of the korean society of oceanography
    • /
    • v.32 no.4
    • /
    • pp.181-190
    • /
    • 1997
  • A large subtidal sand ridge (Jungang Satoe) in Asan Bay, on the west coast of Korea, was studied in order to understand the morphology and sediment transport trend in a macrotidal setting, by means of analyzing sediment samples, current data, side-scan sonographs and seismic profiles. The ridge is about 15 km long and 2-5 km wide, with a relief of about 15 m. It is elongated in the flow direction of flood (SE) and ebb (NW) tidal currents, but asymmetrical in cross section. The western and southwestern side of the ridge is characterized by relatively gentle slopes averaging 0.4$^{\circ}$, whereas on the northeastern side, relatively steep slopes were mapped with 1.6$^{\circ}$ slope angles. Tidal currents associated with the ridge are very strong; maximum surface velo-cities range from neap values of 50 cm/s to spring values of 130 cm/s. The shear velocities during flood and ebb are strong enough to erode and transport sands on the ridge. Sand waves and megaripples (dunes) are the most common bedforms produced by the tidal currents, which show regional differences in shape and size on the ridge. The distribution pattern of these bedforms in-dicates that the flood tidal currents are dominant on the offshore (northwest) side of the ridge, whereas the onsho.e (southeast) side of the ridge is ebb-dominated. The sand transport path as inferred from bedform orientations is directed toward the ridge crest on the flanks, whereas on the crest, it is near-longitudinal to the ridge axis. The convergent, upslope movement of sands on the ridge flanks appears to be important in sand ridge building and maintenance. A significant ridge migration toward the northeast can be suspected on the basis of the ridge morphology, which may cause offshore hazards for navigation.

  • PDF

Mechanical properties and failure mechanisms of sandstone with pyrite concretions under uniaxial compression

  • Chen, Shao J.;Ren, Meng Z.;Wang, Feng;Yin, Da W.;Chen, Deng H.
    • Geomechanics and Engineering
    • /
    • v.22 no.5
    • /
    • pp.385-396
    • /
    • 2020
  • A uniaxial compression test was performed to analyse the mechanical properties and macroscale and mesoscale failure mechanisms of sandstone with pyrite concretions. The effect of the pyrite concretions on the evolution of macroscale cracks in the sandstone was further investigated through numerical simulations with Particle Flow Code in 2D (PFC2D). The results revealed that pyrite concretions substantially influence the mechanical properties and macroscale and mesoscale failure characteristics of sandstone. During the initial loading stage, significant stress concentrations occurred around the edges of the pyrite concretion accompanied by the preferential generation of cracks. Meanwhile, the events and cumulative energy counts of the acoustic emission (AE) signal increased rapidly because of friction sliding between the concretion and sandstone matrix. As the axial stress increased, the degree of the stress concentration remained relatively unchanged around the edges of the concretions. The cracks continued growing rapidly around the edges of the concretions and gradually expanded toward the centre of the sample. During this stage, the AE events and cumulative energy counts increased quite slowly. As the axial stress approached the peak strength of the sandstone, the cracks that developed around the edges of the concretion started to merge with cracks that propagated at the top-left and bottom-right corners of the sample. This crack evolution ultimately resulted in the shear failure of the sandstone sample around the edges of the pyrite concretions.