• Title/Summary/Keyword: shear failure plane

Search Result 157, Processing Time 0.026 seconds

Mechanical properties and failure mechanism of gravelly soils in large scale direct shear test using DEM

  • Tu, Yiliang;Wang, Xingchi;Lan, Yuzhou;Wang, Junbao;Liao, Qian
    • Geomechanics and Engineering
    • /
    • v.30 no.1
    • /
    • pp.27-44
    • /
    • 2022
  • Gravelly soil is a kind of special geotechnical material, which is widely used in the subgrade engineering of railway, highway and airport. Its mechanical properties are very complex, and will greatly influence the stability of subgrade engineering. To investigate the mechanical properties and failure mechanism of gravelly soils, this paper introduced and verified a new discrete element method (DEM) of gravelly soils in large scale direct shear test, which considers the actual shape and broken characteristics of gravels. Then, the stress and strain characteristics, particle interaction, particle contact force, crack development and energy conversion in gravelly soils during the shear process were analyzed using this method. Moreover, the effects of gravel content (GC) on the mechanical properties and failure characteristics were discussed. The results reveal that as GC increases, the shear stress becomes more fluctuating, the peak shear stress increases, the volumetric strain tends to dilate, the average particle contact force increases, the cumulative number of cracks increases, and the shear failure plane becomes coarser. Higher GC will change the friction angle with a trend of "stability", "increase", and "stability". Differently, it affects the cohesion with a law of "increase", "stability" and "increase".

Experimental investigation of multi-layered laminated glass beams under in-plane bending

  • Huang, Xiaokun;Liu, Qiang;Liu, Gang;Zhou, Zhen;Li, Gang
    • Structural Engineering and Mechanics
    • /
    • v.60 no.5
    • /
    • pp.781-794
    • /
    • 2016
  • Due to its relatively good safety performance and aesthetic benefits, laminated glass (LG) is increasingly being used as load-carrying members in modern buildings. This paper presents an experimental study into one applicational scenario of structural LG subjected to in-plane bending. The aim of the study is to reveal the in-plane behaviors of the LG beams made up of multi-layered glass sheets. The LG specimens respectively consisted of two, three and four plies of glass, bonded together by two prominent adhesives. A total of 26 tests were carried out. From these tests, the structural behaviors in terms of flexural stiffness, load resistance and post-breakage strength were studied in detail, whilst considering the influence of interlayer type, cross-sectional interlayer percentage and presence of shear forces. Based on the test results, analytical suggestions were made, failure modes were identified, corresponding failure mechanisms were discussed, and a rational engineering model was proposed to predict the post-breakage strength of the LG beams. The results obtained are expected to provide useful information for academic and engineering professionals in the analysis and design of LG beams bending in-plane.

Modeling of RC shear walls strengthened by FRP composites

  • Sakr, Mohammed A.;El-khoriby, Saher R.;Khalifa, Tarek M.;Nagib, Mohammed T.
    • Structural Engineering and Mechanics
    • /
    • v.61 no.3
    • /
    • pp.407-417
    • /
    • 2017
  • RC shear walls are considered one of the main lateral resisting members in buildings. In recent years, FRP has been widely utilized in order to strengthen and retrofit concrete structures. A number of experimental studies used CFRP sheets as an external bracing system for retrofitting of RC shear walls. It has been found that the common mode of failure is the debonding of the CFRP-concrete adhesive material. In this study, behavior of RC shear wall was investigated with three different micro models. The analysis included 2D model using plane stress element, 3D model using shell element and 3D model using solid element. To allow for the debonding mode of failure, the adhesive layer was modeled using cohesive surface-to-surface interaction model at 3D analysis model and node-to-node interaction method using Cartesian elastic-plastic connector element at 2D analysis model. The FE model results are validated comparing the experimental results in the literature. It is shown that the proposed FE model can predict the modes of failure due to debonding of CFRP and behavior of CFRP strengthened RC shear wall reasonably well. Additionally, using 2D plane stress model, many parameters on the behavior of the cohesive surfaces are investigated such as fracture energy, interfacial shear stress, partial bonding, proposed CFRP anchor location and using different bracing of CFRP strips. Using two anchors near end of each diagonal CFRP strips delay the end debonding and increase the ductility for RC shear walls.

Fatigue property analysis of U rib-to-crossbeam connections under heavy traffic vehicle load considering in-plane shear stress

  • Yang, Haibo;Qian, Hongliang;Wang, Ping
    • Steel and Composite Structures
    • /
    • v.38 no.3
    • /
    • pp.271-280
    • /
    • 2021
  • In this study, the fatigue property of U rib-to-crossbeam connections in orthotropic steel bridge (OSB) crossbeams under heavy traffic vehicle load was investigated considering the effects of in-plane shear stress. The applicability of an improved structural stress (ISS) method was validated for the fatigue behavior analysis of nonwelded arc-shaped cutout regions in multiaxial stress states. Various types of fatigue testing specimens were compared for investigating the equivalent structural stress, fatigue crack initiation positions, and failure modes with the unified standards. Furthermore, the implications of OSB crossbeams and specified loading cases are discussed with respect to the improved method. The ISS method is proven to be applicable for analyzing the fatigue property of nonwelded arc-shaped cutout regions in OSB crossbeams. The used method is essential for gaining a reliable prediction of the most likely failure modes under a specific heavy traffic vehicle load. The evaluated results using the used method are proven to be accurate with a slighter standard deviation. We obtained the trend of equivalent structural stress in arc-shaped cutout regions and validated the crack initiation positions and propagation directions by comparing them with the fatigue testing results. The implications of crossbeam spans on fatigue property are less significant than the effects of crossbeams.

A Study on the Damage of CFRP Laminated Composites Under Out-of-Plane Load (횡방향 하중을 받는 CFRF 적층복합재의 내부손상에 관한 연구)

  • Kim, Moon-Saeng;Park, Seung-Bum;Oh, Deug-Chang
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.11
    • /
    • pp.98-109
    • /
    • 1995
  • An investigation was performed to study the inner damage of laminated composite plates subjected to out-of-plane load. During the investigation, inpact velocity and equivalent static load relationship was derived. Reddy's higher-order shear deformation theory(HSDT) and Hashin's failure criteria were used to determine inner stresses and damaged area. And impact testing was carried out on laminated composite plates by air gun type impact testing machine. The CFRP specimens were composed of [ .+-. 45 .deg. ]$_{4}$and [ .+-. 45 .deg. /0 .deg. /90 .deg. ]$_{2}$ stacking sequences with 0.75$^{t}$ * 26$^{w}$ * 100$^{l}$ (mm) dimension. After impact testing. As a result, a relationship holds between damaged area and impact energy, and a matrix cracking was caused by the interlaminar shear stress in the middle ply and was caused by the inplane transverse stress in the bottom ply.

  • PDF

Failure characteristics of combined coal-rock with different interfacial angles

  • Zhao, Tong-Bin;Guo, Wei-Yao;Lu, Cai-Ping;Zhao, Guang-Ming
    • Geomechanics and Engineering
    • /
    • v.11 no.3
    • /
    • pp.345-359
    • /
    • 2016
  • In order to investigate the influence of the interfacial angel on failure characteristics and mechanism of combined coal-rock mass, 35 uniaxial/biaxial compressive simulation tests with 5 different interfacial angels of combined coal-rock samples were conducted by PFC2D software. The following conclusions are drawn: (1) The compressive strength and cohesion decrease with the increase of interfacial angle, which is defined as the angle between structure plane and the exterior normal of maximum principal plane, while the changes of elastic modulus and internal friction angle are not obvious; (2) The impact energy index $K_E$ decreases with the increase of interfacial angle, and the slip failure of the interface can be predicted based on whether the number of acoustic emission (AE) hits has multiple peaks or not; (3) There are four typical failure patterns for combined coal-rock samples including I (V-shaped shear failure of coal), II (single-fracture shear failure of coal), III (shear failure of rock and coal), and IV (slip rupture of interface); and (4) A positive correlation between interfacial angle and interface effect is shown obviously, and the interfacial angle can be divided into weak-influencing scope ($0-15^{\circ}$), moderate-influencing scope ($15-45^{\circ}$), and strong-influencing scope (> $45^{\circ}$), respectively. However, the confining pressure has a certain constraint effect on the interface effect.

Experimental study on shear behavior of I-girder with concrete-filled tubular flange and corrugated web

  • Shao, Y.B.;Wang, Y.M.
    • Steel and Composite Structures
    • /
    • v.22 no.6
    • /
    • pp.1465-1486
    • /
    • 2016
  • Conventional plate I-girders are sensitive to local buckling of the web when they are subjected mainly to shear action because the slenderness of the web in out-of-plane direction is much bigger. The local buckling of the web can also cause the distorsion of the plate flange under compression as a thin-walled plate has very low torsional stiffness due to its open section. A new I-girder consisted of corrugated web, a concrete-filled rectangular tubular flange under compression and a plate flange under tension is presented to improve its resistance to local buckling of the web and distorsion of the flat plate flange under compression. Experimental tests on a conventional plate I-girder and a new presented I-girder are conducted to study the failure process and the failure mechanisms of the two specimens. Strain developments at some critical positions, load-lateral displacement curves, and load-deflection curves of the two specimens have all be measured and analyzed. Based on these results, the failure mechanisms of the two kinds of I-girders are discussed.

Strength and failure characteristics of the rock-coal combined body with single joint in coal

  • Yin, Da W.;Chen, Shao J.;Chen, Bing;Liu, Xing Q.;Ma, Hong F.
    • Geomechanics and Engineering
    • /
    • v.15 no.5
    • /
    • pp.1113-1124
    • /
    • 2018
  • Geological dynamic hazards during deep coal mining are caused by the failure of a composite system consisting of the rock and coal layers, whereas the joint in coal affects the stability of the composite system. In this paper, the compression test simulations for the rock-coal combined body with single joint in coal were conducted using $PFC^{2D}$ software and especially the effects of joint length and joint angle on strength and failure characteristics in a rock-coal combined body were analyzed. The joint length and joint angle exhibit a deterioration effect on the strength and affect the failure modes. The deterioration effect of joint length of L on the strength can be neglected with a tiny variation at ${\alpha}$ of $0^{\circ}$ or $90^{\circ}$ between the loading direction and joint direction. While, the deterioration effect of L on strength are relatively large at ${\alpha}$ between $30^{\circ}$ and $60^{\circ}$. And the peak stress and peak strain decrease with the increase of L. Additionally, the deterioration effect of ${\alpha}$ on the strength becomes larger with the increase of L. With the increase of ${\alpha}$, the peak stress and peak strain first decrease and then increase, presenting "V-shaped" curves. And the peak stress and peak strain at ${\alpha}$ of $45^{\circ}$ are the smallest. Moreover, the failure mainly occurs within the coal and no apparent failure is observed for rock. At ${\alpha}$ between $30^{\circ}$ and $60^{\circ}$, the secondary shear cracks generated in or close to the joint tips, cause the structural instability failure of the combined body. Therefore, their failure models present as a shear failure along partial joint plane direction and partially cutting across the coal body or a shear failure along the joint plane direction. However, at ${\alpha}$ of $60^{\circ}$ and L of 10 mm, the "V-shaped" shear cracks cutting across the coal body cause its final failure. While crack nucleations at ${\alpha}$ of $0^{\circ}$ or $90^{\circ}$ are randomly distributed in the coal, the failure mode shows a V-shaped shear failure cutting across the coal body.

The effect of non-persistent joints on sliding direction of rock slopes

  • Sarfarazi, Vahab;Haeri, Hadi;Khaloo, Alireza
    • Computers and Concrete
    • /
    • v.17 no.6
    • /
    • pp.723-737
    • /
    • 2016
  • In this paper an approach was described for determination of direction of sliding block in rock slopes containing planar non-persistent open joints. For this study, several gypsum blocks containing planar non-persistent open joints with dimensions of $15{\times}15{\times}15cm$ were build. The rock bridges occupy 45, 90 and $135cm^2$ of total shear surface ($225cm^2$), and their configuration in shear plane were different. From each model, two similar blocks were prepared and were subjected to shearing under normal stresses of 3.33 and $7.77kg/cm^{-2}$. Based on the change in the configuration of rock-bridges, a factor called the Effective Joint Coefficient (EJC) was formulated, that is the ratio of the effective joint surface that is in front of the rock-bridge and the total shear surface. In general, the failure pattern is influenced by the EJC while shear strength is closely related to the failure pattern. It is observed that the propagation of wing tensile cracks or shear cracks depends on the EJC and the coalescence of wing cracks or shear cracks dominates the eventual failure pattern and determines the peak shear load of the rock specimens. So the EJC is a key factor to determine the sliding direction in rock slopes containing planar non-persistent open joints.

A Study on Out-of-Plane Flexural Behavior of the Structure with a Vertical Plane Connection between a Reinforced Concrete Wall and a Steel Plate Concrete Wall (철근 콘크리트 벽과 강판 콘크리트 벽이 수직으로 만나는 이질접합 구조물의 면외 휨 거동 특성 연구)

  • Hwang, Kyeong Min;Lee, Kyung Jin;Hahm, Kyung Won;Kim, Won Ki
    • Journal of Korean Society of Steel Construction
    • /
    • v.25 no.1
    • /
    • pp.93-102
    • /
    • 2013
  • This paper describes the experimental study on the structural behavior of the vertical plane connection between a reinforced concrete wall and a steel plate concrete wall under out-of-plane flexural loads. The specimen was tested under a dynamic test with the use of cyclic loads. As a result of the test, ductile failure mode of vertical bars was shown under a push load and the failure load was more than that of the nominal strength of the specimen. However, the shear failure mode of the connection was confirmed in case of a pull test and thus demonstrates a need for a shear reinforcement.