• Title/Summary/Keyword: shear dilation

Search Result 49, Processing Time 0.023 seconds

Computational Analysis on Calcium Dynamics of Vascular Endothelial Cell Modulated by Physiological Shear Stress

  • Kang, Hyun-Goo;Lee, Eun-Seok;Shim, Eun-Bo;Chnag, Keun-Shik
    • International Journal of Vascular Biomedical Engineering
    • /
    • v.3 no.2
    • /
    • pp.1-9
    • /
    • 2005
  • Flow-induced dilation of blood vessel is the result of a series of bioreaction in vascular endothelial cells(VEC). Shear stress change by blood flow in human artery or vein is sensed by the mechanoreceptor and responsible for such a chain reaction. The inositol(1,4,5)-triphophate($IP_3$) is produced in the first stage to elevate permeability of the intercellular membrane to calcium ions by which the cytosolic calcium concentration is consequently increased. This intracellular calcium transient triggers synthesis of EDRF and prostacyclin. The mathematical model of this VEC calcium dynamics is reproduced from the literature. We then use the Computational Fluid Dynamics(CFD) technique to investigate the blood stream dictating the VEC calcium dynamics. The pulsatile blood flow in a stenosed blood vessel is considered here as a part of study on thrombogenesis. We calculate the pulsating shear stress (thus its temporal change) distributed over the stenosed artery that is implemented to the VEC calcium dynamics model. It has been found that the pulsatile shear stress induces larger intracellular $Ca^{2+}$ transient plus much higher amount of EDRF and prostacyclin release in comparison with the steady shear stress case. It is concluded that pulsatility of the physiological shear stress is important to keep the vasodilation function in the stenosed part of the blood vessel.

  • PDF

A Study of the Influence of Roughness on fracture Shear Behaviour and Permeability (거칠기가 절리의 전단거동 및 투수성에 미치는 영향에 관한 연구)

    • Tunnel and Underground Space
    • /
    • v.12 no.4
    • /
    • pp.312-320
    • /
    • 2002
  • It is well-known that when single rock fractures undergo shear displacement, they are influenced by the boundary conditions and fracture roughness. In this case, aperture geometry will change by means of dilation due to the shear displacement. As fractures become the flow paths, fluid flow through rock fractures is affected by the void geometry. In this study, therefore, the influence of roughness on shear behavior of fractures has been investigated, and the resulting hydraulic behavior has been analyzed. In order for this study, a statistical method has been used to generate rough fractures, and they have been adopted into new conceptual models fur fracture shearing and flow calculations. The main contributions of this study are as follows: firstly, fracture shear behavior becomes less brittle with decreasing fracture roughness and increasing normal stress. Then, the characteristics of aperture distribution becomes those of roughness of fractures indicating its hydraulic significance. Finally, it is observed that with decreasing fracture roughness the breakdown of channel flow occurs more slowly.

Friction behavior of controlled low strength material-soil interface

  • Han, WooJin;Kim, Sang Yeob;Lee, Jong-Sub;Byun, Yong-Hoon
    • Geomechanics and Engineering
    • /
    • v.18 no.4
    • /
    • pp.407-415
    • /
    • 2019
  • A controlled low strength material (CLSM) is a highly flowable cementitious material used for trench backfilling. However, when applying vertical loads to backfilled trenches, shear failure or differential settlement may occur at the interface between the CLSM and natural soil. Hence, this study aims to evaluate the characteristics of the interface friction between the CLSM and soils based on curing time, gradation, and normal stress. The CLSM is composed of fly ash, calcium sulfoaluminate cement, sand, silt, water, and an accelerator. To investigate the engineering properties of the CLSM, flow and unconfined compressive strength tests are carried out. Poorly graded and well-graded sands are selected as the in-situ soil adjacent to the CLSM. The direct shear tests of the CLSM and soils are carried out under three normal stresses for four different curing times. The test results show that the shear strengths obtained within 1 day are higher than those obtained after 1 day. As the curing time increases, the maximum dilation of the poorly graded sand-CLSM specimens under lower normal stresses also generally increases. The maximum contraction increases with increasing normal stress, but it decreases with increasing curing time. The shear strengths of the well-graded sand-CLSM interface are greater than those of the poorly graded sand-CLSM interface. Moreover, the friction angle for the CLSM-soil interface decreases with increasing curing time, and the friction angles of the well-graded sand-CLSM interface are greater than those of the poorly graded sand-CLSM interface. The results suggest that the CLSM may be effectively used for trench backfilling owing to a better understanding of the interface shear strength and behavior between the CLSM and soils.

Basic Study on Shear Characteristics of Filled Rock Joint (충전된 절리면의 전단특성에 관한 기초연구)

  • 김용준;이영휘;도성규
    • Tunnel and Underground Space
    • /
    • v.14 no.5
    • /
    • pp.318-326
    • /
    • 2004
  • In this study, a new direct shear apparatus was developed to investigate the shear characteristics of the rock joints at various conditions. Using the developed apparatus, various experiments on filled rock joints were carried out considering the asperity angle, the normal stress, the type and thickness of filling material and to investigated the basic shear characteristics of filled rock joints were analyzed. According to the experiments performed under the constant normal stress condition by varying the asperity angle, the type and thickness of filling material, it was shown that the behavior and strength of filled rock joint could be defined by the type and thickness of the filling material. The dilation angle of the filled joints was found to be smaller than that of unfilled rock joint, and thereby, the effect of roughness was also reduced due to the filling material. And critical thickness ratio varied according to stress level and roughness as well as the type of filing materials.

Evaluation of Nonlinear Seismic Response of RC Shear Wall in Nuclear Reactor Containment Building (원자로건물의 철근콘크리트 전단벽 비선형 지진응답 평가)

  • Kim, Dae Hee;Lee, Kyung Koo;Koo, Ji Mo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.34 no.6
    • /
    • pp.385-392
    • /
    • 2021
  • Interest in the seismic performance of nuclear facilities under strong earthquakes has increased because their nonlinear response is important. In this paper, we proposed appropriate parameters for the nonlinear finite element analysis of a concrete material model, for a reinforced concrete (RC) shear wall in nuclear facilities: maximum tensile strength, dilation angle, and damage parameter. The study of the effects of the important parameters, on the nonlinear behavior and shear failure mode of the RC shear wall having low aspect ratio, was conducted using ABAQUS finite element analysis program. Based on the study results the nonlinear response of a nuclear reactor containment building (RCB) subjected to a strong earthquake was evaluated using nonlinear time-history analysis.

A Two Mobilized-Plane Model for Soil Liquefaction Analysis (액상화해석을 위한 두 개의 활성면을 가진 구성모델)

  • Park, Sung-Sik
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.10
    • /
    • pp.173-181
    • /
    • 2006
  • A Two Mobilized-Plane Model is proposed for monotonic and cyclic soil response including liquefaction. This model is based on two mobilized planes: a plane of maximum shear stress, which rotates, and a horizontal plane which is spatially fixed. By controlling two mobilized planes, the model can simulate the principal stress rotation effect associated with simple shear from different $K_0$ states. The proposed model gives a similar skeleton behaviour for soils having the same mean stress, regardless of $K_0$ conditions as observed in laboratory tests. The soil skeleton behaviour observed in cyclic drained simple shear tests, including compaction during unloading and dilation at large strain is captured in the model. Undrained monotonic and cyclic response is predicted by imposing the volumetric constraint of the water on the drained or skeleton behaviour. This constitutive model is incorporated into the dynamic coupled stress-flow finite difference program of FLAC (Fast Lagrangian Analysis of Continua). The model was first calibrated with drained simple shear tests on Fraser River sand, and verified by comparing predicted and measured undrained behaviour of Fraser River sand using the same input parameters.

Selection of design friction angle: a strain based empirical method for coarse grained soils

  • Sancak, Emirhan;Cinicioglu, Ozer
    • Geomechanics and Engineering
    • /
    • v.20 no.2
    • /
    • pp.121-129
    • /
    • 2020
  • In the design of geotechnical structures, engineers choose either peak or critical state friction angles. Unfortunately, this selection is based on engineer's preference for economy or safety and lacks the assessment of the expected level of deformation. To fill this gap in the design process, this study proposes a strain based empirical method. Proposed method is founded on the experimentally supported assumption that higher dilatancy angles result in more brittle soil response. Using numerous triaxial test data on ten different soils, an empirical design chart is developed that allows the estimation of shear strain at failure based on soil's peak dilatancy angle and mean grain diameter. Developed empirical chart is verified by conducting a small scale retaining wall physical model test. Finally, a design methodology is proposed that makes the selection of design friction angle in structured way possible based on the serviceability limits of the proposed structure.

Undrained Shear Behavior of Cemented Sand (고결모래의 비배수 전단거동)

  • Lee, Moon Joo;Choi, Sung Kun;Hong, Sung Jin;Lee, Woo Jin
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.3C
    • /
    • pp.181-190
    • /
    • 2006
  • The behavior of artificially cemented sands were investigated by undrained triaxial test of isotropically consolidated sample. The cementation were induced by gypsum that is generally used for the aitificial cementation of sands. The gypsum of 5~20%(sand weight) were included in the sand and cured in the mold under the overburden pressure 55kPa. The yielding strength and stiffness of cemented sand were increased as the degree of cementation. And the dilation of sand was restricted by the cementation bonds, but after breakage of the bonds, it was increased more abrupt than the uncemented sands. The effective stress path showed that the aspects of effective pore water pressure were changed as the degree of cementation and the relative density. The effective stress ratio of cemented sand in the phase transformation line and the failure line were changed by the cementation. Generally the behavior of cemented sand more influenced by the degree of cementation than the relative density.

Numerical Analyses on the Behavioral Characteristics of Side of Drilled Shafts in Rocks and Suggestion of Design Charts (수치해석을 통한 암반에 근입된 현장타설말뚝의 주면부 거동특성 분석 및 설계차트 제시)

  • Lee, Hyuk-Jin;Kim, Hong-Taek
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.6C
    • /
    • pp.407-419
    • /
    • 2006
  • Situations where support is provided solely in shaft resistance of drilled shafts are where the base of the drilled hole cannot be cleaned so that it is uncertain that any end bearing support will be developed. Alternatively, where sound bed rock underlies low strength overburden material, it may be possible to achieve the required support in end bearing on the rock only, and assume that no support is developed in the overburden. However, where the drilled shaft is drilled some depth into sound rock, a combination of side wall resistance and end bearing can be assumed. Both theoretical and field studies of the performance of rock socketed drilled shafts show that the major portion of applied load is usually carried in side wall resistance. Normal stress at the rock-concrete interface is induced by two mechanisms. First, application of a compressive load on the top of the pile results in elastic dilation of the concrete, and second, shear displacement at the rough surface of the drilled hole results in mechanical dilation of the interface. If the stiffness of the material surrounding the socket with respect to normal displacement is constant, then the normal stress will increase with increasing applied load, and there will be a corresponding increase in the shear strength. In this study, the numerical analyses are carried out to investigate the behavioral characteristics of side of rock socketed drilled shafts. The cause of non-linear head load-settlement relationship and failure mechanism at side are also investigated properly and the design charts are suggested and verified for the leading to greater efficiency and reliability in the pile design.

The Effect of Cement Milk Grouting on the Deformation Behavior of Artifcial Rock Joints (시멘트현탁액 주입에 의한 신선한 암석절리의 역학적 특성 변화)

  • 김태혁;이정인
    • Tunnel and Underground Space
    • /
    • v.10 no.2
    • /
    • pp.180-195
    • /
    • 2000
  • Grouting has been practiced as a reliable technique to improve the mechanical properties of rock mass. But, the study of ground improvement by greeting is rare especially in jointed rock mass. In this study, joint compression test and direct shear test were performed on pure rock joint and cement milk grouted rock joint to examine the grouting effect on the property of rock joint. In the pure rock joint compression test, joint closure varied non-linearly with normal stress. But after cement milk grouting, the normal deformation characteristics of the joint was linear at the low normal stress level. As normal stress increased. deformation of the sample rapidly increased due to the stress concentration at the joint asperities. Peak shear strength of the grouted joint in low normal stress was higher than that of non-grouted joint due to the cohesion, decreased exponetially as the grout thickness increased. Thus after cement milk grouting, the failure envelope modified to a curve that has cohesion due to grout material hydration with decreased friction angle. Shear stiffness and peak dilation angle of the grouted joint decreased as the grout thickness increased. The peak shear strength from the direct shear test on grouted rock joint was represented by an empirical equation as a fuction of grout thickness and roughness mean amplitude.

  • PDF