• 제목/요약/키워드: shear coefficient

검색결과 803건 처리시간 0.022초

암석 절리의 3차원 거칠기 특성화와 수정 전단강도 관계식의 제안 (Characterization of the Three Dimensional Roughness of Rock Joints and Proposal of a Modified Shear Strength Criterion)

  • 장보안;김태호;장현식
    • 지질공학
    • /
    • 제20권3호
    • /
    • pp.319-327
    • /
    • 2010
  • 19개의 절리면에 대해 레이저 스캐너를 이용하여 형상을 측정한 후, 각 절리면의 30개 단면에 대하여 절리 거칠기 계수(Joint Roughness Coefficient)를 계산하였다. JRC 값은 단면의 위치에 따라 매우 큰 차이를 보이고 있으나 3개의 단면에서 측정된 JRC의 평균값은 절리면 전체의 JRC 평균값을 잘 대표할 수 있을 것으로 판단된다. 9개의 절리면에 대해서 석고를 이용한 복제 시료를 제작하여 절리면 전단시험을 실시하였다. 최대마찰각(${\phi}_p$)은 JRC의 평균값과 ${\phi}_p=41.037+1.046JRC$의 직선의 관계를 보인다. 그러나 절리면 전단시험에서 측정된 전단강도는 절리면에서 측정된 JRC의 평균값을 사용하여 Barton의 관계식에서 추정된 전단강도보다 상당한 오차를 보여, 절리면 전단시험에서 역산된 $JRC_R$과 JRC의 관계를 $JRC_R=f{\cdot}JRC$로 정의하고 회귀분석하여 수정계수 $f=3.15JRC^{-0.5}$를 도출하였고, 이 수정계수를 적용하여 Barton의 전단강도 관계식을 ${\tau}={\sigma}_n{\cdot}tan(3.15JRC^{0.5}{\bullet}{\log}_{10}\frac{JCS}{{\sigma}_n}+{\phi}_b)$로 수정하여 제안하였다. 이 관계식은 강도가 비교적 낮고 연성의 특성을 보이는 풍화암이나 연암의 절리면 전단강도 추정에 적용될 것으로 기대된다.

선체진동해석(船體振動解析)에 있어서의 유효전단강성도(有效剪斷剛性度) (On the Effective Shear Rigidity in Ship Vibration Analysis)

  • 김극천;최수현
    • 대한조선학회지
    • /
    • 제22권1호
    • /
    • pp.45-53
    • /
    • 1985
  • For the analysis of vertical vibrations of a ship's hull, the Timoshenko beam analogy is accepted up to seven or eight-node modes provided that the system parameters are properly calculated. As to the shear coefficient, it has been a common practice to apply the strain energy method or the projected area method. The theoretical objection to the former is that it ignores lateral contraction due to Poisson's ratio, and the latter is of extreme simplifications. Recently, Cowper's and Stephen's shear coefficient formulas have drawn ship vibration analysts' attentions because these formulas, derivation of which are based on an integrations of the equations of three-dimensional elasticity, take Poisson's ratio into account. Providing computer programs for calculation of the shear coefficient of ship sections modeled as thin-walked multicell sections by each of the forementioned methods, the authors calculated natural vibration characteristics of a bulk carrier and of a container ship by the transfer matrix method using shear coefficients obtained by each of the methods, and discussed the results in comparision. The major conclusions resulted from this investigation are as follows: (1) The shear coefficients taking account of the effects of Poisson's ratio, Cowper's $K_c$ and Stephen's $K_s$, result in higher values of about 10% in maximum as compared with the shear coefficient $K_o$ based on the conventional strain energy methods; (a) $K_c/K_o{\cong}1.05\;and\;K_s/K_o{\cong}1.10$ for ships having single skin side-shell such as a bulk carrier. (b) $K_c/K_o{\cong}1.02\;and\;K_s/K_o{\cong}1.05$ for ships having longitudinally through bulkheads and/or double side-shells in the portion of the cargo hod such as a container carrier. (2) The distributions of the effective shear area along the ship's hull based on each of $K_o,\;K_c\;and\;K_s$ are similar each another except the both end portions. (3) Natural frequencies and mode shapes of the hull based on each of $K_c\;and\;K_s$ are of small differences as compared each other. (4) In cases of using $K_c\;or\;K_s$ in ship vibration analysis, it is also desirable to have the bending rigidity be corrected according to the effective breadth concept. And then, natural frequencies and mode shapes calculated with the bending rigidity corrected in the above and with each of $K_o,\;K_c\;and\;K_s$ result in small differences as compared each another. (5) Referring to those mentioned in the above (3) and (4) and to the full-scale experimental results reported by Asmussen et al.[17], and considering laboursome to prepare the computer input data, the following suggestions can safely be made; (a) Use of $K_o$ in ship vibration analysis is appropriate in practical senses. (b) Use of $K_c$ is appropriate even for detailed vibration analysis of a ship's hull. (6) The effective shear area based on the projected area method is acceptable for the two-node mode.

  • PDF

절리면 전단거동의 크기효과에 관한 실험적 연구 (An Experimental Study for the Scale Effects on Shear Behavior of Rock Joint)

  • 이상은
    • 한국지반환경공학회 논문집
    • /
    • 제7권3호
    • /
    • pp.31-41
    • /
    • 2006
  • 화강암 시료에서 절리면 시편의 크기효과를 연구하기 위해 6가지 크기의 인공절리 시편을 제작하여 직접전단시험을 수행하였다. 각기 다른 수직응력 0.29~2.65MPa과 절리면의 거칠기 파라미터에 대하여 최대전단응력, 잔류전단응력, 전단강성 및 팽창각이 이 연구를 위해 평가되었다. 거칠기 파라미터중 절리거�s계수(JRC)와 절리면의 압축강도(JCS)는 시편의 크기가 증가할수록 감소하였다. 시편의 절리면적이 $12.25cm^2$에서 $361cm^2$으로 증가할 경우 최대전단응력은 약 56~67%, 잔류전단응력은 18~44%까지 감소하였다. 또한 팽창각은 수직응력이 0.29 MPa일 때 $27^{\circ}$, 2.65 MPa일 때 $6^{\circ}$의 변화를 보였다. JRC 크기효과를 고려한 전단강도 관계식이 Barton의 경험식과 비교되었다.

  • PDF

An experimental study on shear mechanical properties of clay-concrete interface with different roughness of contact surface

  • Yang, Wendong;Wang, Ling;Guo, Jingjing;Chen, Xuguang
    • Geomechanics and Engineering
    • /
    • 제23권1호
    • /
    • pp.39-50
    • /
    • 2020
  • In order to understand the shear mechanical properties of the interface between clay and structure and better serve the practical engineering projects, it is critical to conduct shear tests on the clay-structure interface. In this work, the direct shear test of clay-concrete slab with different joint roughness coefficient (JRC) of the interface and different normal stress is performed in the laboratory. Our experimental results show that (1) shear strength of the interface between clay and structure is greatly affected by the change of normal stress under the same condition of JRC and shear stress of the interface gradually increases with increasing normal stress; (2) there is a critical value JRCcr in the roughness coefficient of the interface; (3) the relationship between shear strength and normal stress can be described by the Mohr Coulomb failure criterion, and the cohesion and friction angle of the interface under different roughness conditions can be calculated accordingly. We find that there also exists a critical value JRCcr for cohesion and the cohesion of the interface increases first and then decreases as JRC increases. Moreover, the friction angle of the interface fluctuates with the change of JRC and it is always smaller than the internal friction angle of clay used in this experiment; (4) the failure type of the interface of the clay-concrete slab is type I sliding failure and does not change with varying JRC when the normal stress is small enough. When the normal stress increases to a certain extent, the failure type of the interface will gradually change from shear failure to type II sliding failure with the increment of JRC.

절리면의 거칠기에 따른 암석 절리의 전단강도 및 변형거동에 관한 연구 (Shear Strength and Deformation Behavior of Rock Joint with Roughness)

  • 이상돈;강준호;이정인
    • 터널과지하공간
    • /
    • 제4권3호
    • /
    • pp.261-273
    • /
    • 1994
  • Direct shear tests were carried out on the rock joints and artificial discontinuities to investigate the influence of joint roughness on the shear strength and deformation behaviour. Single direct shear testing apparatus used in experiment was designed and manufactured. Its capacity is 200 tons of shear load, 20 tons of normal load and 50$\textrm{cm}^2$ of maximum shear area. Test samples were cement mortar with artificial discontinuity and sandstone with natural joint. Peak shear strength was increased as joint roughness or normal stress was increased, especially, linearly increased with roughness angle in cement mortar. If joint roughness angle was constant at low normal stress, shear strength was not affected by width and height of joint roughness in cement mortar. Peak shear strengths obtained from tests were larger than the values calculated by Barton's equation, and shear stiffness was increased with joint roughness coefficient.

  • PDF

Shear behavior of multi-hole perfobond connectors in steel-concrete structure

  • Xing, Wei;Lin, Xiao;Shiling, Pei
    • Structural Engineering and Mechanics
    • /
    • 제56권6호
    • /
    • pp.983-1001
    • /
    • 2015
  • This study focuses on the load carrying capacity and the force transfer mechanism of multi-hole perfobond shear connectors in steel-concrete composite structure. The behavior of multi-hole perfobond shear connector is more complicated than single-hole connector cases. 2 groups push-out tests were conducted. Based on the test results, behavior of the connection was analyzed and the failure mechanism was identified. Simplified iterative method and analytic solution were proposed based on force equilibrium for analyzing multi-hole perfobond shear connector performance. Finally, the sensitivity of design parameters of multi-hole perfobond shear connector was investigated. The results of this research showed that shear force distribution curve of multi-hole perfobond shear connector is near catenary. Shear forces distribution were determined by stiffness ratio of steel to concrete member, stiffness ratio of shear connector to steel member, and number of row. Efficiency coefficient was proposed to should be taking into account in different limit state.

The effect of impact with adjacent structure on seismic behavior of base-isolated buildings with DCFP bearings

  • Bagheri, Morteza;Khoshnoudiana, Faramarz
    • Structural Engineering and Mechanics
    • /
    • 제51권2호
    • /
    • pp.277-297
    • /
    • 2014
  • Since the isolation bearings undergo large displacements in base-isolated structures, impact with adjacent structures is inevitable. Therefore, in this investigation, the effect of impact on seismic response of isolated structures mounted on double concave friction pendulum (DCFP) bearings subjected to near field ground motions is considered. A non-linear viscoelastic model of collision is used to simulate structural pounding more accurately. 2-, 4- and 8-story base-isolated buildings adjacent to fixed-base structures are modeled and the coupled differential equations of motion related to these isolated systems are solved in the MATLAB environment using the SIMULINK toolbox. The variation of seismic responses such as base shear, displacement in the isolation system and superstructure (top floor) is computed to study the impact condition. Also, the effects of variation of system parameters: isolation period, superstructure period, size of seismic gap between two structures, radius of curvature of the sliding surface and friction coefficient of isolator are contemplated in this study. It is concluded that the normalized base shear, bearing and top floor displacement increase due to impact with adjacent structure. When the distance between two structures decreases, the base shear and displacement increase comparing to no impact condition. Besides, the increase in friction coefficient difference also causes the normalized base shear and displacement in isolation system and superstructure increase in comparison with bi-linear hysteretic behavior of base isolation system. Totally, the comparison of results indicates that the changes in values of friction coefficient have more significant effects on 2-story building than 4- and 8-story buildings.

Seismic behavior of reinforced concrete T-shaped columns under compression-bending-shear and torsion

  • Ping, Chen Zong;Weiwei, Su;Yang, Yang
    • Earthquakes and Structures
    • /
    • 제20권4호
    • /
    • pp.431-444
    • /
    • 2021
  • T-shaped column is usually used as side column in buildings, which is one of the weak members in structural system. This paper presented a quasi-static cyclic loading experiment of six specimens of reinforced concrete (RC) T-shaped columns under compression-flexure-shear-torsion combined loadings to investigate the effect in the ratio of torsion to moment (T/M) and axial compression ratio (n) and height-thickness ratio of flange plate (φ) on their seismic performance. Based on the test results, the failure characteristics, hysteretic curves, ductility, energy dissipation, stiffness degradation and strength degradation were analyzed. The results show that the failure characteristics of RC T-shaped columns mainly depend on the ratio of torsion to moment, which can be divided into bending failure, bending-torsion failure and shear-torsion failure. With the increase of T/M ratio, the torsion ductility coefficient increased, and in a suitable range, the torsion and horizontal displacement ductility coefficient of RC T-shaped columns could be effectively improved with the increase of axial compression ratio and the decrease of height-thickness ratio of flange plate. Besides, the energy dissipation capacity of the specimens mainly depended on the bending and shear energy dissipation capacity. On the other hand, the increase of axial compression ratio and the ratio of torsion to moment could accelerate the torsional and bending stiffness degradation of RC T-shaped columns. Moreover, the degradation coefficient of torsion strength was between 0.80 and 0.98, and that of bending strength was between 0.75 and 1.00.

철근콘크리트 보의 전단마찰모델 (Shear-Friction Truss Model for Reinforced Concrete Beams)

  • 홍성걸;하태훈
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2001년도 가을 학술발표회 논문집
    • /
    • pp.873-878
    • /
    • 2001
  • This Paper Presents a new model, called the “shear-friction truss model,” for slender reinforced concrete beams to derive a clear and simple equation for their ultimate shear strength. In this model, a portion of the shear strength is provided by shear reinforcement as in the traditional truss model, and the remainder by the shear-friction mechanism. Friction resistance is derived considering both geometrical configuration of the rough crack surface and material Properties. The inclined angle of diagonal strut in the traditional truss model is modified to satisfy the state of balanced failure, when both stirrups and longitudinal reinforcement yield simultaneously. The vertical component of friction resistance is added to the modified truss model to form the shear-friction truss model. Test results from published literatures are used to find the effective coefficient of concrete strength in resisting shear on inclined crack surfaces.

  • PDF

덱크플레이트를 사용한 경량콘크리트 슬래브와 철골보의 합성보에서 쉬어코넥터의 내력에 관한 연구 (A Study on Strength of shear Connectors in Composite Beams of Steel and Lightweight Concrete Slabs with Deck Plate)

  • 김종식;박성무
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1995년도 봄 학술발표회 논문집
    • /
    • pp.293-298
    • /
    • 1995
  • The strength of shear connectors embedded in lightweight concrete slab with deck plate is influenced by various factors of deck plate, shear conncetor and concrete. Generally, it is reported that the strength of shear connector in lightweight concrete decreases in comparison with that in normal concrete. So this paper is to use compressive strength of lilghtweight concrete, width-height ratio of deck plate, and cross sectional area of shear conncetor as variables, to evaluate the strength of shear conncetors in composite beam of steel and lilghtweight concrete slabs with deck plate, and then to suggest the reasonable strength equation by comparing the push-out test results with establixhed strength formula. As the result of 24 specimens test, in case of lightweight concrete slab with deck plate, it has showed that in the same strength, the strength of shear connector decreased about 10~20% in comparison with that in normal concrete. In spite of lightweight concrete, the test results were closely approached the established strength formula of shear connector using Fisher's reduction coefficient.

  • PDF