• 제목/요약/키워드: shear coefficient

검색결과 795건 처리시간 0.028초

순수점성 비뉴톤유체의 물성치들에 대한 농도 및 온도의 영향 (Effects of the Concentration and the Temperature on the Thermophysical Properties of Purely-Viscous Non-Newtonian Fluid)

  • 조금남
    • 대한기계학회논문집
    • /
    • 제18권3호
    • /
    • pp.670-680
    • /
    • 1994
  • The thermophysical properties of Non-Newtonian fluid as the function of the temperature and the concentration are needed in many rheological heat transfer and fluid mechanics problems. The present work investigated the effects of the concentration and the temperature on the thermophysical properties of purely-viscous Non-Newtonian fluids such as the isobaric thermal expansion coefficient, density, zero-shear-rate viscosity, and zero-shear-rate dynamic viscosity within the experimental temperature range from $25^{\circ}C$ to $55^{\circ}C$. The densities of the test fluids were determined as the function of the temperature by utilizing a reference density and the least square equation for the measured isobaric thermal expansion coefficient. As the concentration of purely-viscous Non-Newtonian fluid was increased up to 10,000 wppm, the densities were proportionally increased up to 0.4%. The zero-shear-rate viscosities of test fluids were measured before and after the measurements of the first thermal expansion coefficients and the densities of Non-Newtonian fluid. Even though they were changed up to approximately 22% due to thermal aging and cycling, they had no effects on the thermal expansion coefficients and the densities of Non-Newtonian fluid. The zero-shear-rate dynamic viscosities for purely-viscous Non-Newtonian fluids were compared with the values for distilled water. They showed the similar trend with the zero-shear-rate viscosities due to small differences in the densities for both distilled water and purely-viscous Non-Newtonian fluid.

Space grid analysis method in modelling shear lag of cable-stayed bridge with corrugated steel webs

  • Ma, Ye;Ni, Ying-Sheng;Xu, Dong;Li, Jin-Kai
    • Steel and Composite Structures
    • /
    • 제24권5호
    • /
    • pp.549-559
    • /
    • 2017
  • As few multi-tower single-box multi-cell cable-stayed bridges with corrugated steel webs have been built, analysis is mostly achieved by combining single-girder model, beam grillage model and solid model in support of the design. However, such analysis methods usually suffer from major limitations in terms of the engineering applications: single-girder model fails to account for spatial effect such as shear lag effect of the box girder and the relevant effective girder width and eccentric load coefficient; owing to the approximation in the principle equivalence, the plane grillage model cannot accurately capture shear stress distribution and local stress state in both top and bottom flange of composite box girder; and solid model is difficult to be practically combined with the overall calculation. The usual effective width method fails to provide a uniform and accurate "effective length" (and the codes fail to provide a unified design approach at those circumstance) considering different shear lag effects resulting from dead load, prestress and cable tension in the construction. Therefore, a novel spatial grid model has been developed to account for shear lag effect. The theoretical principle of the proposed spatial grid model has been elaborated along with the relevant illustrations of modeling parameters of composite box girder with corrugated steel webs. Then typical transverse and longitudinal shear lag coefficient distribution pattern at the side-span and mid-span key cross sections have been analyzed and summarized to provide reference for similar bridges. The effectiveness and accuracy of spatial grid analysis methods has been finally validated through a practical cable-stayed bridge.

Distribution of shear force in perforated shear connectors

  • Wei, Xing;Shariati, M.;Zandi, Y.;Pei, Shiling;Jin, Zhibin;Gharachurlu, S.;Abdullahi, M.M.;Tahir, M.M.;Khorami, M.
    • Steel and Composite Structures
    • /
    • 제27권3호
    • /
    • pp.389-399
    • /
    • 2018
  • A perforated shear connector group is commonly used to transfer shear in steel-concrete composite structures when the traditional shear stud connection is not strong enough. The multi-hole perforated shear connector demonstrates a more complicated behavior than the single connector. The internal force distribution in a specific multi-hole perforated shear connector group has not been thoroughly studied. This study focuses on the load-carrying capacity and shear force distribution of multi-hole perforated shear connectors in steel-concrete composite structures. ANSYS is used to develop a three-dimensional finite element model to simulate the behavior of multi-hole perforated connectors. Material and geometric nonlinearities are considered in the model to identify the failure modes, ultimate strength, and load-slip behavior of the connection. A three-layer model is introduced and a closed-form solution for the shear force distribution is developed to facilitate design calculations. The shear force distribution curve of the multi-hole shear connector is catenary, and the efficiency coefficient must be considered in different limit states.

토크전단형 고력볼트의 토크계수 변동에 따른 체결축력 확보방안에 관한 연구 (A Study on the Secure Plan of Clamping Force according to the Variation of Torque-Coefficient in Torque-Shear High Strength Bolts)

  • 이현주;나환선;최성모
    • 복합신소재구조학회 논문집
    • /
    • 제5권3호
    • /
    • pp.8-16
    • /
    • 2014
  • Torque control method and turn of nut method are specified as clamping method of high strength bolts in the steel construction specifications. Quality control of torque coefficient is essential activity because torque control method, which is presently adopted as clamping method in domestic construction sites, is affected by variation of torque coefficient. The clamping of torque shear bolt is based on KS B 2819. It was misunderstood that the tension force of the TS bolt was induced generally at the break of pin-tail specified. However, the clamping forces on slip critical connections do not often meet the intended tension, as it considerably varies due to torque coefficient dependent on the environmental factors and temperature variables despite the break of the pin tail.This study was focused to evaluate the effect of environmental factors and errors of installing bolts during tightening high strength bolts. The environmental parameters were composed of 'wet' condition, 'rust' condition, 'only exposure to air' condition. And the manufacture of trial product was planned to identify the induced force into the bolts. The algorithm for a trial product was composed of the relation between electricity energy taken from torque shear wrench and tension force from hydraulic tension meter.

A smeared crack model for seismic failure analysis of concrete gravity dams considering fracture energy effects

  • Hariri-Ardebili, Mohammad Amin;Seyed-Kolbadi, Seyed Mahdi;Mirzabozorg, Hasan
    • Structural Engineering and Mechanics
    • /
    • 제48권1호
    • /
    • pp.17-39
    • /
    • 2013
  • In the present paper, a coaxial rotating smeared crack model is proposed for mass concrete in three-dimensional space. The model is capable of applying both the constant and variable shear transfer coefficients in the cracking process. The model considers an advanced yield function for concrete failure under both static and dynamic loadings and calculates cracking or crushing of concrete taking into account the fracture energy effects. The model was utilized on Koyna Dam using finite element technique. Dam-water and dam-foundation interactions were considered in dynamic analysis. The behavior of dam was studied for different shear transfer coefficients considering/neglecting fracture energy effects. The results were extracted at crest displacement and crack profile within the dam body. The results show the importance of both shear transfer coefficient and the fracture energy in seismic analysis of concrete dams under high hydrostatic pressure.

흙-벤토나이트 혼합물의 지반공학적 특성 (Geotechnical Properties of Soil-Bentonite Mixtures)

  • 채교익;권무남
    • 한국농공학회지
    • /
    • 제43권5호
    • /
    • pp.132-144
    • /
    • 2001
  • Iln order to figure out criteria of bentonite for using as impervious material of waste landfill, laboratory experiments were performed to reveal the geotechnical properties of soil-bentonite mixtures such as compaction test, direct shear test, unconfined compression test, triaxial compression test, consolidation test and permeability test. The results of the study are summarized as follows ; 1. Based on the compaction test, optimum moisture content increased with the increase of bentonite content, but maximum dry density decreased. 2. In unconfined compression test, the maximum strength of the soil-bentonite mixtures appeared at 10% bentonite content. The correlation equation between stress($\sigma$) and strain($\varepsilon$) of the soil-bentonite mixtures is given by ; $\sigma=\frac{a\cdot\varepsilon}{\varepsilon^n+b}$ 3. In shear test of the mixtures. the shear strength showed an increasing trend with increase of bentonite content and the maximum shear strength appeared at 10% bentonite content. 4. In consolidation test, the coefficient of compressibility $(a_v)$$(m_v)$$(C_v)$

  • PDF

A numerical study of the turbulent fluctuating flow around a square cylinder for different inlet shear

  • Islam, A.K.M. Sadrul;Hasan, R.G.M.
    • Wind and Structures
    • /
    • 제5권1호
    • /
    • pp.15-24
    • /
    • 2002
  • This paper reports the numerical calculations of uniform turbulent shear flow around a square cylinder. The predictions are obtained by solving the two-dimensional unsteady Navier-Stokes equations in a finite volume technique. The turbulent fluctuations are simulated by the standard $k-{\varepsilon}$ model and one of its variant which takes care of the realizability constraint in order to suppress the excessive generation of turbulence in a stagnation condition. It has been found that the Strouhal number and the mean drag coefficient are almost unaffected by the shear parameter but the mean lift coefficient is increased. The present predictions are compared with available experimental data.

THEORETICAL STUDY OF MOTION OF SMALL SPHERICAL AIR BUBBLES IN A UNIFORM SHEAR FLOW OF WATER

  • MEHDI, SYED MURTUZA;KIM, SIN
    • Nuclear Engineering and Technology
    • /
    • 제47권1호
    • /
    • pp.126-134
    • /
    • 2015
  • A simple Couette flow velocity profile with an appropriate correlation for the free terminal rise velocity of a single bubble in a quiescent liquid can produce reliable results for the trajectories of small spherical air bubbles in a low-viscosity liquid (water) provided the liquid remains under uniform shear flow. Comparison of the model adopted in this paper with published results has been accomplished. Based on this study it has also been found that the lift coefficient in water is higher than its typical value in a high-viscosity liquid and therefore a modified correlation for the lift coefficient in a uniform shear flow of water within the regime of the $E\ddot{o}tv\ddot{o}s$ number $0.305{\leq}Eo{\leq}1.22$ is also presented.

An evolutionary fuzzy modelling approach and comparison of different methods for shear strength prediction of high-strength concrete beams without stirrups

  • Mohammadhassani, Mohammad;Nezamabadi-pour, Hossein;Suhatril, Meldi;shariati, Mahdi
    • Smart Structures and Systems
    • /
    • 제14권5호
    • /
    • pp.785-809
    • /
    • 2014
  • In this paper, an Adaptive nerou-based inference system (ANFIS) is being used for the prediction of shear strength of high strength concrete (HSC) beams without stirrups. The input parameters comprise of tensile reinforcement ratio, concrete compressive strength and shear span to depth ratio. Additionally, 122 experimental datasets were extracted from the literature review on the HSC beams with some comparable cross sectional dimensions and loading conditions. A comparative analysis has been carried out on the predicted shear strength of HSC beams without stirrups via the ANFIS method with those from the CEB-FIP Model Code (1990), AASHTO LRFD 1994 and CSA A23.3 - 94 codes of design. The shear strength prediction with ANFIS is discovered to be superior to CEB-FIP Model Code (1990), AASHTO LRFD 1994 and CSA A23.3 - 94. The predictions obtained from the ANFIS are harmonious with the test results not accounting for the shear span to depth ratio, tensile reinforcement ratio and concrete compressive strength; the data of the average, variance, correlation coefficient and coefficient of variation (CV) of the ratio between the shear strength predicted using the ANFIS method and the real shear strength are 0.995, 0.014, 0.969 and 11.97%, respectively. Taking a look at the CV index, the shear strength prediction shows better in nonlinear iterations such as the ANFIS for shear strength prediction of HSC beams without stirrups.

암석 절리의 3차원 거칠기 특성화와 수정 전단강도 관계식의 제안 (Characterization of the Three Dimensional Roughness of Rock Joints and Proposal of a Modified Shear Strength Criterion)

  • 장보안;김태호;장현식
    • 지질공학
    • /
    • 제20권3호
    • /
    • pp.319-327
    • /
    • 2010
  • 19개의 절리면에 대해 레이저 스캐너를 이용하여 형상을 측정한 후, 각 절리면의 30개 단면에 대하여 절리 거칠기 계수(Joint Roughness Coefficient)를 계산하였다. JRC 값은 단면의 위치에 따라 매우 큰 차이를 보이고 있으나 3개의 단면에서 측정된 JRC의 평균값은 절리면 전체의 JRC 평균값을 잘 대표할 수 있을 것으로 판단된다. 9개의 절리면에 대해서 석고를 이용한 복제 시료를 제작하여 절리면 전단시험을 실시하였다. 최대마찰각(${\phi}_p$)은 JRC의 평균값과 ${\phi}_p=41.037+1.046JRC$의 직선의 관계를 보인다. 그러나 절리면 전단시험에서 측정된 전단강도는 절리면에서 측정된 JRC의 평균값을 사용하여 Barton의 관계식에서 추정된 전단강도보다 상당한 오차를 보여, 절리면 전단시험에서 역산된 $JRC_R$과 JRC의 관계를 $JRC_R=f{\cdot}JRC$로 정의하고 회귀분석하여 수정계수 $f=3.15JRC^{-0.5}$를 도출하였고, 이 수정계수를 적용하여 Barton의 전단강도 관계식을 ${\tau}={\sigma}_n{\cdot}tan(3.15JRC^{0.5}{\bullet}{\log}_{10}\frac{JCS}{{\sigma}_n}+{\phi}_b)$로 수정하여 제안하였다. 이 관계식은 강도가 비교적 낮고 연성의 특성을 보이는 풍화암이나 연암의 절리면 전단강도 추정에 적용될 것으로 기대된다.