• 제목/요약/키워드: shear capacity formula

검색결과 75건 처리시간 0.021초

Experimental study on two types of new beam-to-column connections

  • Ma, Hongwei;Jiang, Weishan;Cho, Chongdu
    • Steel and Composite Structures
    • /
    • 제11권4호
    • /
    • pp.291-305
    • /
    • 2011
  • The new structure consisting of continuous compound spiral hoop reinforced concrete (CCSHRC)column and steel concrete composite (SCC) beam has both the advantages of steel structures and concrete structures. Two types of beam-to-column connections applied in this structural system are presented in this paper. The connection details are as follows: the main bars in beam concrete pass through the core zone for both types of connections. For connecting bar connection, the steel I-beam webs are connected by bolts to a steel plate passing through the joint while the top and bottom flanges of the beams are connected by four straight and two X-shaped bars. For bolted end-plate connection, the steel I-beam webs are connected by stiffened extended end-plates and eight long shank bolts passing through the core zone. In order to study the seismic behaviour and failure mechanisms of the connections, quasi-static tests were conducted on both types of full-scale connection subassemblies and core zone specimens. The load-drift hysteresis loops show a plateau for the connecting bar connection while they are excellent plump for bolted end-plate connection. The shear capacity formulas of both types of connections are presented and the values calculated by the formula agree well with the test results.

현장재하시험을 통한 헬리컬파일의 지지력에 관한 연구 (Study on the Bearing Capacity of Helical Pile through Field Load Tests)

  • 권기렬;장정욱;조송현
    • 한국콘텐츠학회논문지
    • /
    • 제20권11호
    • /
    • pp.669-675
    • /
    • 2020
  • 본 연구에서는 헬리컬파일의 지지력 특성 규명을 위하여 현장재하시험을 통하여 얻은 실측 지지력과 이론식에 의해 산정된 예측 지지력을 비교 분석하였다. 헬리컬파일은 중공형 축에 중공형 축보다 직경이 큰 하나 혹은 다수의 나선형 원판을 부착시킨 형상의 파일이다. 헬리컬파일은 굴삭기에 부착된 회전관입기를 사용하여 파일을 지반에 회전 관입시키기 때문에 항타와 굴착이 필요한 다른 말뚝에 비해 소음이 작고, 비교적 소형 장비로 시공이 가능하여 공간이 협소한 도심지에서도 시공이 용이하다. 최근 들어 헬리컬파일을 적용한 기초 공법의 설계와 시공이 많이 실시되고 있으나 헬리컬파일의 지지력에 관한 연구는 설계와 시공 사례에 비하여 아직 미진하다. 현장재하시험은 이음부, 헬리컬파일의 규격, 재하시험의 종류, 그라우팅 실시 여부를 변수로 총 10회 실시하였다. 이론식에 의한 말뚝의 예측 지지력은 Individual bearing method와 Cylindrical shear method을 통하여 산정하였다.

Research on hysteretic characteristics of EBIMFCW under different axial compression ratios

  • Li, Sheng-cai;Lin, Qiang
    • Earthquakes and Structures
    • /
    • 제22권5호
    • /
    • pp.461-473
    • /
    • 2022
  • Energy-saving block and invisible multiribbed frame composite wall (EBIMFCW) is an important shear wall, which is composed of energy-saving blocks, steel bars and concrete. This paper conducted seismic performance tests on six 1/2-scale EBIMFCW specimens, analyzed their failure process under horizontal reciprocating load, and studied the effect of axial compression ratio on the wall's hysteresis curve and skeleton curve, ductility, energy dissipation capacity, stiffness degradation, bearing capacity degradation. A formula for calculating the peak bearing capacity of such walls was proposed. Results showed that the EBIMFCW had experienced a long time deformation from cracking to failure and exhibited signs of failure. The three seismic fortification lines of the energy-saving block, internal multiribbed frame, and outer multiribbed frame sequentially played important roles. With the increase in axial compression ratio, the peak bearing capacity and ductility of the wall increased, whereas the initial stiffness decreased. The change in axial compression ratio had a small effect on the energy dissipation capacity of the wall. In the early stage of loading, the influence of axial compression ratio on wall stiffness and strength degradation was unremarkable. In the later stage of loading, the stiffness and strength degradation of walls with high axial compression ratio were low. The displacement ductility coefficients of the wall under vertical pressure were more than 3.0 indicating that this wall type has good deformation ability. The limit values of elastic displacement angle under weak earthquake and elastic-plastic displacement angle under strong earthquake of the EBIMFCW were1/800 and 1/80, respectively.

Experimental and numerical study on static behavior of grouped large-headed studs embedded in UHPC

  • Hu, Yuqing;Zhao, Guotang;He, Zhiqi;Qi, Jianan;Wang, Jingquan
    • Steel and Composite Structures
    • /
    • 제36권1호
    • /
    • pp.103-118
    • /
    • 2020
  • The static behavior of grouped large-headed studs (d = 30 mm) embedded in ultra-high performance concrete (UHPC) was investigated by conducting push-out tests and numerical analysis. In the push-out test, no splitting cracks were found in the UHPC slab, and the shank failure control the shear capacity, indicating the large-headed stud matches well with the mechanical properties of UHPC. Besides, it is found that the shear resistance of the stud embedded in UHPC is 11.4% higher than that embedded in normal strength concrete, indicating that the shear resistance was improved. Regarding the numerical analysis, the parametric study was conducted to investigate the influence of the concrete strength, aspect ratio of stud, stud diameter, and the spacing of stud in the direction of shear force on the shear performance of the large-headed stud. It is found that the stud diameter and stud spacing have an obvious influence on the shear resistance. Based on the test and numerical analysis results, a formula was established to predict the load-slip relationship. The comparison indicates that the predicted results agree well with the test results. To accurately predict the shear resistance of the stud embedded in UHPC, a design equation for shear strength is proposed. The ratio of the calculation results to the test results is 0.99.

전단보강철근이 없는 RC보에 대한 에폭시 모르타르 패널의 전단보강에 관한 연구 (Regarding a Shear Strengthening of an Epoxy Mortar Panel for RC Beam Without Shear Strengthening Reinforcing Bar)

  • 이상호;조민수;허재상
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제12권3호
    • /
    • pp.135-146
    • /
    • 2008
  • 본 연구에서는 에폭시 모르타르 패널을 철근콘크리트 보부재의 전단 보강재로 사용하기 위하여 보강재의 종류와 보강량, 탄소섬유시트의 간격을 변수로 가력실험을 수행하고 부재의 구조적 성능을 파악하였다. 이를 바탕으로 에폭시 모르타르 패널을 철근콘크리트 보부재의 전단 보강재로 사용하기 위한 설계 방법은 $V_c$, $V_s$, $V_{sheet}$, $V_p$의 합으로 전단강도를 가정하였으며, 연구결과에 대한 실험값/제안값의 평균값은 1.10, 표준편차는 8.16%로 나타났다.

Experimental and numerical investigation on exposed RCFST column-base Joint

  • Ben, Mou;Xingchen, Yan;Qiyun, Qiao;Wanqiu, Zhou
    • Steel and Composite Structures
    • /
    • 제45권5호
    • /
    • pp.749-766
    • /
    • 2022
  • This paper investigates the seismic performance of exposed RCFST column-base joints, in which the high-strength steel bars (USD 685) are set through the column and reinforced concrete foundation without any base plate and anchor bolts. Three specimens with different axial force ratios (n = 0, 0.25, and 0.5) were tested under cyclic loadings. Finite element analysis (FEA) models were validated in the basic indexes and failure mode. The hysteresis behavior of the exposed RCFST column-base joints was studied by the parametrical analysis including six parameters: width of column (D), width-thickness ratio (D/t), axial force ratio (n), shear-span ratio (L/D), steel tube strength (fy) and concrete strength (fc). The bending moment of the exposed RCFST column-base joint increased with D, fy and fc. But the D/t and L/D play a little effect on the bending capacity of the new column-base joint. Finally, the calculation formula is proposed to assess the bending moment capacities, and the accuracy and stability of the formula are verified.

V형 강재댐퍼의 이력특성 평가 (Evaluation on Hysteretic Behaviors of V Shaped Metallic Dampers)

  • 이현호;김세일
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제15권1호
    • /
    • pp.254-262
    • /
    • 2011
  • 본 연구의 목적은 슬릿형 강재댐퍼보다 에너지 소산능력 등이 우수할 것으로 예상되는 V형 강재 댐퍼 개발에 있다. 이를 위하여 댐퍼 스트럿의 높이 및 각도에 대한 실험체 9개를 만들어 전단실험을 수행하였다. 실험결과, 스트럿 높이가 270mm이고, 스트럿 각도 $60^{\circ}$인 경우의 V형 강재댐퍼가 가장 우수한 내진성능 보유한 것으로 평가되었다. 또한 기존내력식을 이용한 댐퍼의 항복강도를 비교한 결과, 기존 실험결과를 분석한 범위 내에서 V형 댐퍼의 실험결과가 높게 평가되는 것으로 나타났다.

Comprehensive experimental investigation on mechanical behavior for types of reinforced concrete Haunched beam

  • Albegmprli, Hasan M.;Gulsan, M. Eren;Cevik, Abdulkadir
    • Advances in concrete construction
    • /
    • 제7권1호
    • /
    • pp.39-50
    • /
    • 2019
  • This study presents a comprehensive experimental investigation on mostly encountered types of Reinforced Concrete Haunched Beams (RCHBs) where three modes of RCHBs investigated; the diversity of studied beams makes it a pioneer in this topic. The experimental study consists of twenty RCHBs and four prismatic beams. Effects of important parameters including beam type, the inclination angle, flexure and compressive reinforcement, shear reinforcement on mechanical behavior and failure mode of each mode of RCHBs were examined in detail. Furthermore crack propagation at certain load levels were inspected and visualized for each RCHB mode. The results confirm that RCHBs have different behavior in shear as compared to the prismatic beams. At the same time, different mechanical behavior was observed between the modes of RCHBs. Therefore, RCHBs were classified into three modes according to the inclination shape and mode of failure (Modes A, B and C). However, it was observed that there is no significant difference between RCHBs and prismatic beams regarding flexural behavior. Moreover, a new and unified formula was proposed to predict the critical effective depth of all modes of RCHBs that is very useful to predict the critical section for failure.

Distortional and local buckling of steel-concrete composite box-beam

  • Jiang, Lizhong;Qi, Jingjing;Scanlon, Andrew;Sun, Linlin
    • Steel and Composite Structures
    • /
    • 제14권3호
    • /
    • pp.243-265
    • /
    • 2013
  • Distortional and local buckling are important factors that influences the bearing capacity of steel-concrete composite box-beam. Through theoretical analysis of distortional buckling forms, a stability analysis calculation model of composite box beam considering rotation of steel beam top flange is presented. The critical bending moment calculation formula of distortional buckling is established. In addition, mechanical behaviors of a steel beam web in the negative moment zone subjected separately to bending stress, shear stress and combined stress are investigated. Elastic buckling factors of steel web under different stress conditions are calculated. On the basis of local buckling analysis results, a limiting value for height-to thickness ratio of a steel web in the elastic stage is proposed. Numerical examples are presented to verify the proposed models.

SIP 말뚝의 주면저항력 특성 고찰 및 산정식 제안 (Investigation of Characteristics and Suggestion of Evaluation Formulae for Skin Resistance of SIP)

  • 임해식;박용부;박종배
    • 한국지반환경공학회 논문집
    • /
    • 제3권2호
    • /
    • pp.15-21
    • /
    • 2002
  • 건설공사에서 발생하는 환경문제에 대한 관심이 고조되는 가운데 기성 말뚝을 항타하는 과정에서 유발되는 소음, 진동문제를 해결하기 위해 저소음, 저진동 공법인 매입말뚝공법이 많이 적용되고 있다. 국내에서는 매입말뚝공법으로 SIP공법이 주로 사용되고 있다. 그러나 아직까지 SIP공법에 관한 합리적인 지지력 산정식이 제시되어있지 못한 실정이다. 이에 대해 본 연구에서는 SIP 말뚝의 주면저항력 특성을 고찰하여 이러한 문제점들을 개선, 보완하기 위하여 다양한 조건에서 SIP 말뚝 주면과 지반흙 사이의 경계면에 대하여 직접전단시험을 실시하였다. 그 결과를 토대로 통일분류상 SM, SC 지반에서의 SIP 말뚝 주면저항력 특성을 고찰하고 해당 지반에서 최대주면저항력 산정식을 제시하였다.

  • PDF