• Title/Summary/Keyword: shear capacity

Search Result 1,931, Processing Time 0.034 seconds

Behavior of Three Story Bearing Wall Structure under Lateral toad Reversals (반복 수평하중을 받는 3층 철근콘크리트 내력벽 아파트 구조물의 거동 특성)

  • Chang Kuk-Kwan;Oh Young-Hun;Kim Ki-Hyun
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.5 s.83
    • /
    • pp.627-634
    • /
    • 2004
  • The purpose of this study is to investigate seismic performance of a bearing wall system for apartment buildings. An 1/3 scale three-story specimen was constructed and tested under cyclic lateral loads. The specimen was consisted of pierced walls and coupling elements as well as floor slabs. The bearing wall system is considered to have a adequate deformation capacity up to $2.0\%$ of roof drift ratio, and the experimental results showed the ductile load-deformation characteristics even though some walls were failed in shear Nonlinear analysis was peformed to compare the load-deformation curve obtained from the experimental program. The result of nonlinear analysis could be useful to predict the actual behavior characteristics of the bearing wall system subjected to lateral loads.

Settlement Restraint of Soft Ground by Low Slump Mortar Injection (저유동설 몰탈주입에 의한 연약지반의 침하억제 효과)

  • 천병식;여유현;정영교
    • Journal of the Korean Geotechnical Society
    • /
    • v.17 no.6
    • /
    • pp.53-67
    • /
    • 2001
  • In this study the pilot test of CGS as injection method by low slump mortar was performed and the results were analyzed in order to find out the application of this method and effect of settlement restraint. The site far pilot test is adjacent to apartments supported by pile foundations. Sand drain method was performed previously as countermeasures against settlement, but settlement occur continuously because this ground is very soft. Site investigations such as SPT, DCPT and vane shear test were performed to determine the characteristics of ground improvement. Field measurements and FDM analysis were performed on purpose to find out the displacement of ground during injection works. From the results of this study, CGS method can be optimized by the control of diagram, space, depth, injection material, and injection pressure. CGS improved soft ground compositely by the bearing effect of CGS columns and reinforcement of adjacent ground. Considering that increase of N value is about 2.1, CGS can be considered as an effective method to increase the bearing capacity as well as to stop the settlement of soft ground. It is also expected to be economic and effective in improvement of ground when it is used in applicable sites.

  • PDF

Seismic performance of RC buildings subjected to past earthquakes in Turkey

  • Inel, Mehmet;Meral, Emrah
    • Earthquakes and Structures
    • /
    • v.11 no.3
    • /
    • pp.483-503
    • /
    • 2016
  • This study aims to evaluate seismic performance of existing low and mid-rise reinforced concrete buildings by comparing their displacement capacities and displacement demands under selected ground motions experienced in Turkey as well as demand spectrum provided in 2007 Turkish Earthquake Code for design earthquake with 10% probability of exceedance in 50 years for soil class Z3. It should be noted that typical residential buildings are designed according to demand spectrum of 10% probability of exceedance in 50 years. Three RC building sets as 2-, 4- and 7-story, are selected to represent reference low-and mid-rise buildings located in the high seismicity region of Turkey. The selected buildings are typical beam-column RC frame buildings with no shear walls. The outcomes of detailed field and archive investigation including approximately 500 real residential RC buildings established building models to reflect existing building stock. Total of 72 3-D building models are constructed from the reference buildings to include the effects of some properties such as structural irregularities, concrete strength, seismic codes, structural deficiencies, transverse reinforcement detailing, and number of story on seismic performance of low and mid-rise RC buildings. Capacity curves of building sets are obtained by nonlinear static analyses conducted in two principal directions, resulting in 144 models. The inelastic dynamic characteristics are represented by "equivalent" Single-Degree-of- Freedom (ESDOF) systems using obtained capacity curves of buildings. Nonlinear time history analysis is used to estimate displacement demands of representative building models idealized with (ESDOF) systems subjected to the selected ground motion records from past earthquakes in Turkey. The results show that the significant number of pre-modern code 4- and 7-story buildings exceeds LS performance level while the modern code 4- and 7-story buildings have better performances. The findings obviously indicate the existence of destructive earthquakes especially for 4- and 7-story buildings. Significant improvements in the performance of the buildings per modern code are also obvious in the study. Almost one third of pre-modern code buildings is exceeding LS level during records in the past earthquakes. This observation also supports the building damages experienced in the past earthquake events in Turkey.

A study on the characteristics of multi load transfer ground anchor system (다중정착 지반앵커의 하중전달 특성에 관한 연구)

  • Kim, Ji-Ho;Jeong, Hyeon-Sic;Kwon, Oh-Yeob;Shin, Jong-Ho
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.16 no.1
    • /
    • pp.25-50
    • /
    • 2014
  • In order to identify a load transfer mechanism of ground anchors, the behavior of multi load transfer ground anchor systems was investigated and compared with those of compression type anchors and tension type anchors. Large scale model tests were performed and stress-strain relationships were obtained. The load transfer mechanism of ground anchors was also investigated in the field tests. Finally, numerical analyses to predict the load-displacement relationships of anchors were conducted. It is concluded that the load transfer characteristics of MLT anchors are mechanically much more superior in the pull-out resistance effect than those of existing compression and tension type anchors. From the results of research work, we could suggest that the max pull-out capacity of anchor capacity to each the soil condition. Also, the MLT anchors can be used to achieve both structural enhancement and economic construction in earth retaining or supporting structures.

Seismic Behavior of Nonseismically Detailed Reinforced Concrete Beam-Column Joints (비내진 상세를 가진 RC 보-기둥 접합부의 지진 거동)

  • Woo, Sung-Woo;Lee, Han-Seon
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.6
    • /
    • pp.894-901
    • /
    • 2003
  • The objective of this study is to clarify the seismic capacity and the characteristics in the hysteretic behavior of RC structures with non-seismic detailing. Interior and exterior beam-column subassemblages were selected from a ten-story RC building and six 1/3-scale specimens were constructed with three variables; (1) with and without slab, (2) with and without hoop bars in the joint region, (3) upward and downward direction of anchorage for the bottom bar in beams of exterior beam-column subassemblage. The test results have shown; (1) in case of interior beam-column subassemblage, there is no almost difference between nonseismic and seismic details in the strength and ductility capacity; (2) the Korean practice of anchorage (downward and 25 $d_{b}$ anchorage length) in the exterior joint caused the 10%∼20% reduction of strength and 27% reduction of ductility in comparison with the case of seismic details; and the existence of hoop bars in the joint region shows no effect in shear strain.

Seismic Retrofit of RC Exterior Beam-Column Joints Strengthened with CFRP (CFRP를 이용한 비내진 철근콘크리트 외부 보-기둥 접합부의 내진 보강)

  • Kim, Min;Lee, Ki-Hak;Lee, Jae-Hong;Woo, Sung-Woo;Lee, Jung-Weon
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.6 s.96
    • /
    • pp.729-736
    • /
    • 2006
  • It has been shown that many Reinforced Concrete(RC) structures designed without seismic details have experienced brittle shear failures in the beam-column joint area and resulted in large permanent deformations and structural collapse. In this study, experimental investigations into the performance of exterior reinforced concrete beam-column joints strengthened with the carbon fiber-reinforced polymer(CFRP) under cyclic loading were presented. The CFRP has been applied by choosing different combinations and locations to determine the effective way to improve structural performances of joints. Eight beam-column joints were tested to investigate behaviors of each specimen under cyclic load and to compare performances of seismic retrofit. According to the experimental study, the retrofit strengthened with the CFRP provides significant improvements of flexural capacity and ductility of beam-column joints originally built without seismic details.

An Experimental Study on the Compression Behavior of the Circular and Square Tubular Steel Pipe filled with Concrete (콘크리트 충전 원형 및 각형 합성 강관 기둥의 압축 거동에 관한 실험적 연구)

  • Park, Kang-Geun
    • Journal of Korean Association for Spatial Structures
    • /
    • v.6 no.1 s.19
    • /
    • pp.55-63
    • /
    • 2006
  • Concrete-filled steel columns consist of circular, square or rectangular hollow sections filled concrete. Much research has studied for the behavior of concrete-filled steel structures. The advantages from structural point of view are the triaxial confinement of the concrete within the section, and the fire resistance of the column which largely depends on the residual capacity of the concrete core. The axial capacity of a concrete-filled rectangular or circular section is enhanced by the confining effect of the steel section on the concrete which depends in the magnitude on the shape of the section and the length of the column. Buckling tends to reduce the benefit of confinement on the squash load as the column slenderness increases. In circular sections it is possible to develop the cylinder strength of the concrete. When compare with reinforced concrete columns, the concrete-filled composite column possesses much better strength and ductility in shear and generally in flexure also. Many researches are being conducted about concrete filled steel column to get these advantages in building design. In this paper it is provided to the basic experimental study of compression behavior of the circular and rectangular tubular steel pipe filled with concrete.

  • PDF

Seismic Performance of Post Tensioned Flat Plate Structures according to Slab Bottom Reinforcement (하부 철근 유무에 따른 포스트 텐션 플랫 플레이트 골조의 내진성능 평가)

  • Han, Sang-Whan;HwangBo, Jin;Ryu, Jong-Hyuk;Park, Young-Mi
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.12 no.4
    • /
    • pp.11-17
    • /
    • 2008
  • This study evaluates the seismic performance of post-tensioned flat plate structures with or without slab bottom reinforcement. For this purpose, 3 and 9 story frames were designed only considering gravity loads. This study conducts a nonlinear static pushover analysis. This study was an analytical model that is able to represent punching shear failure and fracture mechanism. The analytical results showed that the seismic performance of a post-tension flat plate is strongly influenced by the existence of slab bottom reinforcement through column. By placing slab bottom reinforcement in a PT flat plate frame, lateral strength and max drift capacity are significantly increased.

Effect of Vitamin E Supplementation in Diets on Pork Quality (사료내 비타민 E의 추가급여가 돈육질에 미치는 영향)

  • 홍종욱;김인호;강종옥;홍의철;이상환;권오석;한영종
    • Food Science of Animal Resources
    • /
    • v.21 no.4
    • /
    • pp.344-348
    • /
    • 2001
  • This study was carried out to examine the effect of vitamin E additive supplements on the meat quality of finishing pigs. Two treatments were provided as commercial diet and commercial diet +vitamin E 200 IU. Dressing percent and carcass length were not different between treatments. Longissimus muscle color and longissimus muscle firmness were a significant differences between two treatments(P<0.05). However, longissimus muscle marbling. longissimus muscle loin area and back fat thickness were not significantly differences. Water holding capacity was increased along the level supplement of vitamin E increased(P<0.05). However. there were not differences on shear force, thawing loss, and cooking loss between treatments. L*, a*, b* and TBARS value were not different between treatments. In conclusion. longissimus muscle color and water holding capacity were affected by vitamin E supplement.

  • PDF

A study on Properties of Strength and Deformation of Composite beams varying Ratio of Tensile bar to Steel (철골철근비에 따른 혼합구조보의 내력 및 변형 특성에 관한 연구)

  • Lim, Byung Ho;Park, Jung Min;Kim, Wha Jung
    • Journal of Korean Society of Steel Construction
    • /
    • v.14 no.1
    • /
    • pp.87-94
    • /
    • 2002
  • In the preceding study, a series of results was presented according to factors like as attaching method of main bar, shear span to depth ratio, reinforcing method for different types of region among various factors, which could determine the properties of composite beams. Based on these results, this study was planned to investigate the structural behaviors of according to attaching method of main bar for composite beams(end-reinforced concrete(RC), center-steel concrete (SC)) varying ratio of tensile bar to steel mainly. Consequently, there were little difference according to attaching method of main bar. And as the ratio of tensile bar to steel increase, the efficiency of strength was high, but ductile capacity of beams could deteriorate. Therefore, to maximize the structural properties of composite beams, it was considered that the ratio of tensile bar to steel should be limited.