• Title/Summary/Keyword: shear beam models

Search Result 281, Processing Time 0.024 seconds

Strut-Tie Models and Load Distribution Ratios for Reinforced Concrete Beams with Shear Span-to-Effective Depth Ratio of Less than 3 (II) Validity Evaluation (전단경간비가 3 이하인 철근콘크리트 보의 스트럿-타이 모델 및 하중분배율(II) 타당성 평가)

  • Chae, Hyun-Soo;Yun, Young Mook
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.3
    • /
    • pp.267-278
    • /
    • 2016
  • In this study, the ultimate strength of 335 simply supported reinforced concrete beams with shear span-to-effective depth ratio of less than 3 was evaluated by the ACI 318-14's strut-tie model approach implemented with the indeterminate strut-tie models and load distribution ratios of the companion paper. The ultimate strength of the beams was also estimated by using the experimental shear strength models, the theoretical shear strength models, and the current strut-tie model design codes. The validity of the proposed strut-tie models and load distribution ratios was examined by comparing the strength analysis results classified according to the prime design variables of the shear span-to-effective depth ratio, flexural reinforcement ratio, and compressive strength of concrete.

Effective Beam Width Coefficients for Lateral Stiffness in Flat-Plate Structures

  • Park, Jung-Wook;Kim, Chul-Soo;Song, Jin-Gyu;Lee, Soo-Gon
    • KCI Concrete Journal
    • /
    • v.13 no.2
    • /
    • pp.49-57
    • /
    • 2001
  • Flat-plate buildings are commonly modeled as two-dimensional frames to calculate unbalanced moments, lateral drift and shear at slab-column connections. The slab-column frames under lateral loads are analyzed using effective beam width models, which is convenient for computer analysis. In this case, the accuracy of this approach depends on the exact values of effective beam width to account for the actual behavior of slab-column connections. In this parametric study, effective beam width coefficients for wide range of the variations are calculated on the several types of slab-column connections, and the results are compared with those of other researches. Also the formulas for effective beam width coefficients are proposed and verified by finite element analysis. The proposed formulas are founded to be more suitable than others for analyzing flat-plate buildings subjected to lateral loading.

  • PDF

Modeling and fast output sampling feedback control of a smart Timoshenko cantilever beam

  • Manjunath, T. C.;Bandyopadhyay, B.
    • Smart Structures and Systems
    • /
    • v.1 no.3
    • /
    • pp.283-308
    • /
    • 2005
  • This paper features about the modeling and design of a fast output sampling feedback controller for a smart Timoshenko beam system for a SISO case by considering the first 3 vibratory modes. The beam structure is modeled in state space form using FEM technique and the Timoshenko beam theory by dividing the beam into 4 finite elements and placing the piezoelectric sensor/actuator at one location as a collocated pair, i.e., as surface mounted sensor/actuator, say, at FE position 2. State space models are developed for various aspect ratios by considering the shear effects and the axial displacements. The effects of changing the aspect ratio on the master structure is observed and the performance of the designed FOS controller on the beam system is evaluated for vibration control.

A Study on the Shear Strength Evaluation of Reinforced Concrete Deep Beams subject to Concentrated Loads. (집중하중을 받는 철근콘크리트 깊은 보의 전단강도 평가에 관한 연구)

  • 양준호;이진섭;김상식
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10a
    • /
    • pp.577-582
    • /
    • 2000
  • This study is aimed to evaluate the shear strength of reinforced concrete deep beams subject to concentrated loads, using a simplified strut-tie model. For the shear strength prediction of deep beams, it is prerequisite to evaluate the effective width of strut and to verify the efficiency factors proposed by MacGregor et al.. The results analyzed by truss models have been compared with those calculated by domestic code for the existing data of 90 deep beam specimens. The shear strength of deep beams were reviewed with respect to concrete strength, the shear span-depth ratio, and the ratio of web reinforcements. The results showed that the shear strength of the proposed model gave a better agreement than the domestic code approach.

  • PDF

Distortional and local buckling of steel-concrete composite box-beam

  • Jiang, Lizhong;Qi, Jingjing;Scanlon, Andrew;Sun, Linlin
    • Steel and Composite Structures
    • /
    • v.14 no.3
    • /
    • pp.243-265
    • /
    • 2013
  • Distortional and local buckling are important factors that influences the bearing capacity of steel-concrete composite box-beam. Through theoretical analysis of distortional buckling forms, a stability analysis calculation model of composite box beam considering rotation of steel beam top flange is presented. The critical bending moment calculation formula of distortional buckling is established. In addition, mechanical behaviors of a steel beam web in the negative moment zone subjected separately to bending stress, shear stress and combined stress are investigated. Elastic buckling factors of steel web under different stress conditions are calculated. On the basis of local buckling analysis results, a limiting value for height-to thickness ratio of a steel web in the elastic stage is proposed. Numerical examples are presented to verify the proposed models.

Time dependent finite element analysis of steel-concrete composite beams considering partial interaction

  • Dias, Maiga M.;Tamayo, Jorge L.P.;Morsch, Inacio B.;Awruch, Armando M.
    • Computers and Concrete
    • /
    • v.15 no.4
    • /
    • pp.687-707
    • /
    • 2015
  • A finite element computer code for short-term analysis of steel-concrete composite structures is extended to study long-term effects under service loads, in the present work. Long-term effects are important in engineering design because they influence stress and strain distribution of the structural system and therefore contribute to the increment of deflections in these structures. For creep analysis, a rheological model based on a Kelvin chain, with elements placed in series, was employed. The parameters of the Kelvin chain were obtained using Dirichlet series. Creep and shrinkage models, proposed by the CEB FIP 90, were used. The shear-lag phenomenon that takes place at the concrete slab is usually neglected or not properly taken into account in the formulation of beam-column finite elements. Therefore, in this work, a three-dimensional numerical model based on the assemblage of shell finite elements for representing the steel beam and the concrete slab is used. Stud shear connectors are represented for special beam-column elements to simulate the partial interaction at the slab-beam interface. The two-dimensional representation of the concrete slab permits to capture the non-uniform shear stress distribution in the horizontal plane of the slab due to shear-lag phenomenon. The model is validated with experimental results of two full-scale continuous composite beams previously studied by other authors. Results are given in terms of displacements, bending moments and cracking patterns in order to shown the influence of long-term effects in the structural response and also the potentiality of the present numerical code.

Cyclic behavior of steel beam-concrete wall connections with embedded steel columns (II): Theoretical study

  • Li, Guo-Qiang;Gu, Fulin;Jiang, Jian;Sun, Feifei
    • Steel and Composite Structures
    • /
    • v.23 no.4
    • /
    • pp.409-420
    • /
    • 2017
  • This paper theoretically studies the cyclic behavior of hybrid connections between steel coupling beams and concrete shear walls with embedded steel columns. Finite element models of connections with long and short embedded steel columns are built in ABAQUS and validated against the test results in the companion paper. Parametric studies are carried out using the validated FE model to determine the key influencing factors on the load-bearing capacity of connections. A close-form solution of the load-bearing capacity of connections is proposed by considering the contributions from the compressive strength of concrete at the interface between the embedded beam and concrete, shear yielding of column web in the tensile region, and shear capacity of column web and concrete in joint zone. The results show that the bond slip between embedded steel members and concrete should be considered which can be simulated by defining contact boundary conditions. It is found that the loadbearing capacity of connections strongly depends on the section height, flange width and web thickness of the embedded column. The accuracy of the proposed calculation method is validated against test results and also verified against FE results (with differences within 10%). It is recommended that embedded steel columns should be placed along the entire height of shear walls to facilitate construction and enhance the ductility. The thickness and section height of embedded columns should be increased to enhance the load-bearing capacity of connections. The stirrups in the joint zone should be strengthened and embedded columns with very small section height should be avoided.

Prediction of the Shear Strength of FRP Strengthened RC Beams (II) - Verification and parametric study - (FRP로 보강된 철근 콘크리트보의 전단강도 예측 (II) - 모델 검증 및 변수연구 -)

  • Sim Jong-Sung;Park Cheol-Woo;Moon Do-Young;Sim Jae-Won
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.3 s.87
    • /
    • pp.353-359
    • /
    • 2005
  • To evaluate the proposed shear strength models developed in a companion paper, the shear strengths of test specimens strengthened with FRP were predicted by ACl specification, and elsewhere. The advantage and disadvantage of the models were investigated by the comparisons with the test results. The characteristics and limitations of the existing model were investigated with respect to FRP types, strengthening methods, shear span to depth ratio and effective strength of FRP. The results of this parametric study showed that the proposed shear strength model is more accurate than other models.

Finite element model for the long-term behaviour of composite steel-concrete push tests

  • Mirza, O.;Uy, B.
    • Steel and Composite Structures
    • /
    • v.10 no.1
    • /
    • pp.45-67
    • /
    • 2010
  • Composite steel-concrete structures are employed extensively in modern high rise buildings and bridges. This concept has achieved wide spread acceptance because it guarantees economic benefits attributable to reduced construction time and large improvements in stiffness. Even though the combination of steel and concrete enhances the strength and stiffness of composite beams, the time-dependent behaviour of concrete may weaken the strength of the shear connection. When the concrete loses its strength, it will transfer its stresses to the structural steel through the shear studs. This behaviour will reduce the strength of the composite member. This paper presents the development of an accurate finite element model using ABAQUS to study the behaviour of shear connectors in push tests incorporating the time-dependent behaviour of concrete. The structure is modelled using three-dimensional solid elements for the structural steel beam, shear connectors, concrete slab and profiled steel sheeting. Adequate care is taken in the modelling of the concrete behaviour when creep is taken into account owing to the change in the elastic modulus with respect to time. The finite element analyses indicated that the slip ductility, the strength and the stiffness of the composite member were all reduced with respect to time. The results of this paper will prove useful in the modelling of the overall composite beam behaviour. Further experiments to validate the models presented herein will be conducted and reported at a later stage.

A simple quasi-3D sinusoidal shear deformation theory with stretching effect for carbon nanotube-reinforced composite beams resting on elastic foundation

  • Hadji, Lazreg;Zouatnia, Nafissa;Meziane, Mohamed Ait Amar;Kassoul, Amar
    • Earthquakes and Structures
    • /
    • v.13 no.5
    • /
    • pp.509-518
    • /
    • 2017
  • The objective of the present paper is to investigate the bending behavior with stretching effect of carbon nanotube-reinforced composite (CNTRC) beams. The beams resting on the Pasternak elastic foundation, including a shear layer and Winkler spring, are considered. The single-walled carbon nanotubes (SWCNTs) are aligned and distributed in polymeric matrix with different patterns of reinforcement. The material properties of the CNTRC beams are estimated by using the rule of mixture. The significant feature of this model is that, in addition to including the shear deformation effect and stretching effect it deals with only 4 unknowns without including a shear correction factor. The single-walled carbon nanotubes (SWCNTs) are aligned and distributed in polymeric matrix with different patterns of reinforcement. The material properties of the CNTRC beams are assessed by employing the rule of mixture. The equilibrium equations have been obtained using the principle of virtual displacements. The mathematical models provided in this paper are numerically validated by comparison with some available results. New results of bending analyses of CNTRC beams based on the present theory with stretching effect is presented and discussed in details. the effects of different parameters of the beam on the bending responses of CNTRC beam are discussed.