• Title/Summary/Keyword: shape-memory-alloy

Search Result 483, Processing Time 0.032 seconds

A Theoretical Comparison of Two Possible Shape Memory Processes in Shape Memory Alloy Reinforced Metal Matrix Composite

  • Lee Jae Kon;Kim Gi Dae
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.7
    • /
    • pp.1460-1468
    • /
    • 2005
  • Two possible shape memory processes, austenite to detwinned martensite transformation and twinned martensite to detwinned martensite transformation of a shape memory alloy have been modeled and examined. Eshelby's equivalent inclusion method with Mori-Tanaka's mean field theory is used for modeling of the shape memory processes of TiNi shape memory alloy reinforced aluminum matrix composite. The shape memory amount of shape memory alloy, plastic strain and residual stress in the matrix are computed and compared for the two processes. It is shown that the shape memory amount shows differences in a small prestrain region, but the plastic strain and the residual stress in the matrix show differences in the whole prestrain region. The shape memory process with initially martensitic state of the shape memory alloy would be favorable to the increase in the yield stress of the composite owing to the large compressive residual stress and plastic strain in the matrix.

A Study on the Improvement of Interfacial Bonding Shear Strength of Ti50-Ni50 Shape Memory Alloy Composite (Ti_{50}-Ni_{50} 형상기억합금 복합체의 계면 접학 전단강도 향상에 관한 연구)

  • Lee, Hyo-Jae;Hwang, Jae-Seok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.10 s.181
    • /
    • pp.2461-2468
    • /
    • 2000
  • In this paper, single fiber pull-out test is used to measure the interfacial bonding shear strength of $Ti_{50}-Ni_{50}$ shape memory alloy composite with temperature. Fiber and matrix of $Ti_{50}-Ni_{50}$ shape memory alloy composite are respectively $Ti_{50}-Ni_{50}$ shape memory alloy and epoxy resin. To strengthen the interfacial bonding shear stress, various surface treatments are used. They are the hand-sanded surface treatment, the acid etched surface treatment and the silane coupled surface treatment etc.. The interfacial bonding shear strength of surface treated shape memory alloy fiber is greater than that of surface untreated shape memory alloy fiber by from 10% to 16%. It is assured that the hand-sanded surface treatment and the acid etched surface treatment are the best way to strengthen the interfacial bonding shear strength of $Ti_{50}-Ni_{50}$ shape memory composite. The best treatment condition of surface is 10% HNO$_3$ solution in the etching method to strengthen the interfacial bonding shear strength of $Ti_{50}-Ni_{50}$ shape memory alloy composite.

Thermomechanical Behaviors of Shape Memory Alloy Using Finite Element Analysis (유한요소해석을 이용한 형상기억합금의 열적/기계적 거동 연구)

  • ;Scott R. White
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.833-836
    • /
    • 2001
  • The thermomechanical behaviors of the shape memory alloy were conducted through the finite element analysis of ABAQUS with UMAT user subroutine. The unified thermomechanical constitutive equation suggested by Lagoudas was adapted into the UMAT user subroutine to investigate the characteristics of the shape memory alloy. The three cases were solved to investigate the thermomechanical characteristics of the shape memory alloy. The material properties for the analysis were obtained by DSC and DMA techniques. According to the results, the thermomechanical characteristics, such as a shape memory effect and a pseudoelastic effect, could be obtained through the finite element analysis and the analysis results were revealed to agree well with the experimental results. Therefore, the finite element analysis using UMAT user subroutine is one of prominent analysis techniques to investigate the thermomechnical behaviors of the shape memory alloy quantitatively.

  • PDF

Workpiece-Chucking Device Using Two-Way Shape Memory Alloys: Feasibility Test (양방향성 형상기억합금을 이용한 공작물 척킹장치: 유용성 검증)

  • Shin, Woo-Cheol;Ro, Seung-Kook;Park, Jong-Kweon
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.18 no.5
    • /
    • pp.462-468
    • /
    • 2009
  • In this study, a workpiece-chucking device that generates a chucking force from a shape memory alloy is introduced. This paper first presents train procedure to transform a commercial one-way shape memory alloy into a two-way shape memory alloy, which makes unclamping mechanism of the chucking device simpler than that using the one-way shape memory alloy Second, it describes a conceptual design of the workpiece-chucking device using the two-way type shape memory alloy. Third, it presents a prototype and its chucking characteristics, such as time-response of clamping/unclamping operations and a relationship between temperatures and chucking forces. Finally, it describes a mill-machining test conducted with the prototype. The results confirm that the proposed workpiece-chucking device is feasible for micro machine-tools.

  • PDF

Design and Analysis of Flap System with Shape Memory Alloy (형상기억합금이 적용된 플랩 시스템의 설계 및 해석)

  • ;Scott R, White;Eric Loth
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.596-599
    • /
    • 1997
  • In this study, the flow control system with shape memory alloy in jet engine inlet was suggested to adjust the shock boundary layer interact~on for supersonic flight system. It consisted of the flap with shape memory alloy, spar with steel, and fixing device with aluminum alloy. The advantages of itself are a simple configuration, a passive air circulation by using the flap deflection due to pressure difference, and no need to be required the auxiliary devices. Finite element analysis was conducted to predict the thenno-mechanical behavlor of the flap system with shape memory alloy. The user-defined subroutine UMAT was implemented with ABAQUS to accon~modate the thermo-mechanical constitutive relation of shape memory alloy.

  • PDF

Buckling behavior of shape-memory alloy tube (형상기억합금 튜브의 buckling 거동)

  • Choi, Jeom-Yong
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.10a
    • /
    • pp.378-381
    • /
    • 2008
  • The buckling behavior of cylindrical shape-memory alloy and aluminum tube is investigated at room temperature using a split Hopkinson pressure bar and an Instron hydraulic machine with a specially designed recording system. The shape-memory alloy at superelastic property regime buckles gradually in quasi-static loading, and fully recovers upon unloading. However, the buckling of aluminum tube is sudden and catastrophic, and shows permanent deformation. This gradual buckling of shape-memory alloy is associated with the forward and reverse transformation of stress-induced martensite and seems to have a profound effect on the unstable deformation of tube structures made from shape-memory alloy.

  • PDF

Evaluation of Thermomechanical Characteristics of NITINOL Shape Memory Alloy (NITINOL 형상기억합금의 열적/기계적 특성 평가)

  • ;Sridhar Krishnan;Scott R. White
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.683-686
    • /
    • 2001
  • The thermomechanical characteristics of NITINOL shape memory alloy were evaluated using DSC with small samples and DMA with three-point bending specimens. The shape memory alloy of 54.4Ni/45.5Ti wt.% was used so that the austenite finish temperature was in the range of $50~100^{\circ}C$. Two types of sample were tested in the experiments corresponding to as-received and annealed conditions. Simple beam bending theory was used to calculate the dynamic moduli of the shape memory alloy. According to the results, a large discrepancy in transformation temperatures was found between DSC and DMA techniques. Annealing treatment was found to suppress the R-phase transformation during cooling and the secondary plateau in the austenite transformation. Such a heat treatment was also significantly influenced to raise the transformation temperatures and the moduli of the shape memory alloy.

  • PDF

Effect of Cold Rolling on Fatigue Crack Propagation of TiNi/A16061 Shape Memory Composite (TiNi/A16061 형상기억복합재료의 피로균열진전에 대한 냉간압연효과)

  • Lee Jin-Kyung;Park Young-Chul;Lee Kyu-Chang;Lee Sang-Pill;Cho Youn-Ho;Lee Joon-Hyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.10 s.241
    • /
    • pp.1315-1320
    • /
    • 2005
  • TiNi alloy fiber was used to recover the original shape of materials using its shape memory effect. The shape memory alloy plays an important role within the metal matrix composite. The shape memory alloy can control the crack propagation in metal matrix composite, and improve the tensile strength of the composite. In this study, TiNi/A16061 shape memory alloy(SMA) composite was fabricated by hot press method, and pressed by a roller for its strength improvement. The four kinds of specimens were fabricated with $0\%,\;3.2\%,\;5.2\%\;and\;7\%$ and volume fraction of TiNi alloy fiber, respectively. A fatigue test has performed to evaluate the crack initiation and propagation for the TiNi/A16061 SMA composite fabricated by かis method. In order to study the shape memory effect of the TiNi alloy fiber, the test has also done under both conditions of the room temperature and high temperature. The relationship between the crack growth rate and the stress intensity factor was clarified for the composite, and the cold rolling effect was also studied.

Fabrication of Soft Textile Actuators Using NiTi Linear Shape Memory Alloy and Measurement of Dynamic Properties for a Smart Wearable (스마트 웨어러블용 NiTi계 선형 형상기억합금을 이용한 소프트 텍스타일 액추에이터 제작 및 동적 특성 측정)

  • Kim, Sang Un;Kim, Sang Jin;Kim, Jooyong
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.44 no.6
    • /
    • pp.1154-1162
    • /
    • 2020
  • In this study, the soft textile actuator is produced for a smart wearable with the shape memory effects from linear shape memory alloys of Nickel and Titanium using the driving force through the fabrication process. The measurement model was designed to measure dynamic characteristics. The heating method, and memory shape of the linear shape memory alloy were set to measure the operating temperature. A shape memory alloy at 40.13℃, was used to heat the alloy with a power supply for the selective operation and rapid reaction speed. The required amount of current was obtained by calculating the amount of heat and (considering the prevention of overheating) set to 1.3 A. The fabrication process produced a soft textile actuator using a stitching technique for linear shape memory alloys at 0.5 mm intervals in the general fabric. The dynamic characteristics of linear shape memory alloys and actuators were measured and compared. For manufactured soft textile actuators, up to 0.8 N, twice the force of the single linear shape memory alloy, 0.38 N, and the response time was measured at 50 s.

Thermo-dynamic Characteristics Of High Temperature Nitinol Shape Memory Alloy (고온용 Nitinol 형상기억합금의 열적/동역학적 특성평가)

  • Cha S.Y.;Park S.E.;Cho C.R.;Park J.K.;Jeong S.Y.
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2005.05a
    • /
    • pp.441-445
    • /
    • 2005
  • In the resent years, as the research and the development of micro and precision machinery become active, the interest of micro actuators using SMA(Shape Memory Alloy) has been increased. But, no detailed researches between the thermo-dynamic property in Nitinol alloy have been done yet. In this study, the thermal property of high temperature Nitinol shape memory alloy were evaluated using differential scanning calorimeter(DSC). The structure property was investigated using X-ray diffraction(XRD). A dynamic mechanical analyzer(DMA) with three point bending mode was used to study storage and loss modulus of shape memory alloy according to the thirteen frequencies in the temperature range between 30 and $200^{\circ}C$. The effects of the temperature heating/cooling rate, the frequency on the damping capacity have been systematically investigated. Such a frequency and temperature changes also influenced significantly to the damping behavior of the shape memory alloy. It was also found that Nitinol exhibited high damping capacity during phase transformation.

  • PDF