• Title/Summary/Keyword: shape optimum design

Search Result 651, Processing Time 0.024 seconds

Optimum design of lead-rubber bearing system with uncertainty parameters

  • Fan, Jian;Long, Xiaohong;Zhang, Yanping
    • Structural Engineering and Mechanics
    • /
    • v.56 no.6
    • /
    • pp.959-982
    • /
    • 2015
  • In this study, a non-stationary random earthquake Clough-Penzien model is used to describe earthquake ground motion. Using stochastic direct integration in combination with an equivalent linear method, a solution is established to describe the non-stationary response of lead-rubber bearing (LRB) system to a stochastic earthquake. Two parameters are used to develop an optimization method for bearing design: the post-yielding stiffness and the normalized yield strength of the isolation bearing. Using the minimization of the maximum energy response level of the upper structure subjected to an earthquake as an objective function, and with the constraints that the bearing failure probability is no more than 5% and the second shape factor of the bearing is less than 5, a calculation method for the two optimal design parameters is presented. In this optimization process, the radial basis function (RBF) response surface was applied, instead of the implicit objective function and constraints, and a sequential quadratic programming (SQP) algorithm was used to solve the optimization problems. By considering the uncertainties of the structural parameters and seismic ground motion input parameters for the optimization of the bearing design, convex set models (such as the interval model and ellipsoidal model) are used to describe the uncertainty parameters. Subsequently, the optimal bearing design parameters were expanded at their median values into first-order Taylor series expansions, and then, the Lagrange multipliers method was used to determine the upper and lower boundaries of the parameters. Moreover, using a calculation example, the impacts of site soil parameters, such as input peak ground acceleration, bearing diameter and rubber shore hardness on the optimization parameters, are investigated.

Evaluation to Collision Safety Performance of Stacking Angle Different CFRP/Al Circular Member (적층각이 다른 CFRP/Al 혼성 원형부재의 충돌안전성능 평가)

  • Yang, Yong Jun;Kim, Young Nam;Cha, Cheon Seok;Jung, Jong An;Yang, In Young
    • Journal of the Korean Society of Safety
    • /
    • v.30 no.6
    • /
    • pp.1-6
    • /
    • 2015
  • The actual condition is that environmental pollution due to the development of various industries has recently become a serious issue. An interest in improving the gas mileage is rising due to an increase in the number of vehicles in the era of high oil price in particular. In order to solve this problem, priority should be given to light-weight design of car body, However, at present, a design method enabling the conventional steel plate to be replaced is direly needed in order to guarantee passengers' safety according to excessive light-weight design of car body. In this study, in order to apply a design method that could realize fuel savings and environmental pollution prevention through an improvement in gas mileage together with meeting the safety requirements for vehicles, it was supposed that CFRP/Al composites member would be used as primary structural member. And to this end, it was intended to obtain optimum design data by experimentally implementing external impulsive load applied to the car body. According to results of impact test of CFRP/Al composites member, a collapsed shape of folding, crack, and bending occurred. So, it was possible to find that energy was observed. And in case of specimen having an angle of $90^{\circ}$ in the outermost layer and stack sequence of $[90^{\circ}{_2}/0^{\circ}2]s$, its collapsed length was shown to be short. Therefore, it was possible to find that the absorbed energy was shown to be higher by 20% or above at the maximum.

Shape Optimization of an Active Micro-Mixer for Improving Mixing Efficiency (혼합 효율 향상을 위한 마이크로 동적 믹서의 형상최적화)

  • Park, Jae-Yong;Kim, Sang-Rak;Lee, Won-Gu;Yoo, Jin-Sik;Kim, Young-Dae;Maeng, Joo-Seung;Han, Seog-Young
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.6
    • /
    • pp.146-152
    • /
    • 2007
  • An active micro-mixer, which was composed of an oscillating micro-stirrer in the microchannel to provide rapid, effective mixing at high flow, rates was analyzed. The effects of molecular diffusion and disturbance by the stirrer were considered with regard to two types of mixer models: the simple straight microchannel and microchannel with an oscillating stirrer. Two types of mixer models were studied by analyzing mixing behaviors such as their interaction after the stirrer. The mixing was calculated by Lattice Boltzmann methods using the D2Q9 model. In this study, the time-averaged mixing index formula was used to estimate the mixing performance of time-dependent flow. The mixing indices of the two models compared. From the results, it was found that the mixer with an oscillating stirrer was much more enhanced and stabilized. Therefore, an optimum design for a dynamic micro-mixer with an oscillating stirrer was performed using Taguchi method in order to obtain a robust solution. The design parameters were established as the frequency, the length and the angle of the stirrer and the optimal values were determined to be 2, 0.8D and ${\pm}75^{\circ}$, respectively. It was found that the mixing index of the optimal design increased 80.72% compared with that of the original design.

Process and Die Design of Square Cup Drawing for Wall Thickening (사각형 판재성형 시 벽두께 증육을 위한 금형 및 공정 설계)

  • Kim, Jinho;Hong, Seokmoo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.9
    • /
    • pp.5789-5794
    • /
    • 2015
  • Recently, thin and light-weight production technologies are needed in IT industry in accordance with increase of the smart phones and mobile PC products. In order to make light and high rigidity products, engineering plastic and aluminum materials are frequently used in products appearance and frame hat support structure. Especially aluminum extrusion and CNC Brick processes are widely used for high strength and high rigidity technology. But extrusion method has constraints to apply exterior design and CNC Brick process has relatively high production cost and low speed of manufacturing. In this research, a new process method is introduced in order to reduce material cost and to improve manufacturing speed dramatically. Plate forging process means basically that thickening of local wall area thickness after deform exterior shape by deep drawing and bending process. Therefore, it is possible to minimize the waste of material and the manufacturing time. In this study the process of plate forging is designed using finite element program AFDEX-2D and the thickness and the width of initial deformed blank. And it is verified as a sample which is a part of laptop developed through the proposed plate forging method.

Size Optimization Design Based on Maximum Stiffness for Structures (구조물의 최대강성 치수최적설계)

  • Shin, Soo-Mi;Park, Hyun-Jung
    • Journal of the Korea Society of Computer and Information
    • /
    • v.14 no.1
    • /
    • pp.65-72
    • /
    • 2009
  • This study presents a structural design optimizing sizes of high-rise steel plane truss members by maximizing stiffness subjected to given volume constraints. The sizing optimum design is evaluated by using a well-known optimality criteria (OC) of gradient-based optimization methods. In typical size optimization methods, truss structures are optimized with respect to minimum weight with constraints on the value of some displacement and on the member stresses. The proposed method is an inversed size optimization process in comparisons with the typical size optimization methods since it maximizes stiffness associated with stresses or displacements subjected to volume constraints related to weight. The inversed approach is another alternative to classical size optimization methods in order to optimize members' sizes in truss structures. Numerical applications of a round shape steel pipe truss structure are studied to verify that the proposed maximum stiffness-based size optimization design is suitable for optimally developing truss members's sizes.

Optimum Design of Cross Section Lateral Damper Oil Seals for High Speed Railway Vehicle (고속 철도 차량 횡댐퍼 오일 씰의 형상 단면 최적설계)

  • Hwang, Ji-Hwan;Kim, Chul-Su
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.1
    • /
    • pp.579-584
    • /
    • 2017
  • The damper oil seal of a high-speed railway vehicle is made from nitrile butadiene rubber (NBR) in order to prevent lubricant from leaking into the damper and to stop harmful contaminants from entering the external environment while in service. Oil leakage through the seal primarily occurs from fatigue failure of the damper. Cumulative damage of the seal occurs due to the contact force between the rod and the rubber during movement due to track irregularities and cants, among other factors. Thus, the design of the oil seal should minimize the maximum principal strain at weak points. In this study, the optimal cross section of the damper oil seal was found using the multi-island genetic algorithm method to improve the durability of the damper. The optimal shape of the oil seal was derived using process automation and design optimization software. Nonlinear material properties for finite element analysis (FEA) of the rubber were determined by Marlow's model. The nonlinear FEA confirmed that the maximum principal strain at the oil leakage point was decreased 24% between the initial design and the optimum design.

A Study on the Principal Factors of Rail Tunnel Cross-Section Design due to High Speed (고속화에 따른 철도터널의 단면규모 결정요소에 대한 고찰)

  • Ryu, Dong-Hun;Lee, Hyeon-Jeong;Han, Sang-Yeon;Shin, Hyon-Il;Jung, Byung-Ryul;Song, Chung-Ryul
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.1487-1501
    • /
    • 2011
  • Recently, fast-growing up railway transportations. Because, regional traffic congestion problem solving and a period of rapid expansion to meet the demand of industries. In addition the government also suggest to new paradigm for the future 'Low Carbon, Green Growth' is presented as a new national vision. To meet the social needs and the time demands, Last of the railway increase very long tunnels and huge deep tunnels. Especially this trend accelerated high speed up in the tunnel, the revision of design criteria and research challenges are being actively improved. Mainly in the tunnel cross-section was under the control of the vehicle train speed 150km/hr by the construction of the vehicle cross-section of the tunnel. More than 200km/hr rail tunnel depending on the vehicle's speed caused the tunnel to the pressure fluctuations will be governed by the aerodynamic changes. Considering the economy to ensure the optimum cross-section of the railway tunnel to the description scheme is selected cross-section of the railway tunnel to determine the size domestic or international railway tunnel for the elements((based on fast Algorithm design criteria, the center line spacing, streetcar line, cross-sectional shape, sectoral issues, such as interface and aerodynamics) based on design practices and to review results. In this study, to propose guidelines depending on the size of a railway tunnel cross section for the size of the determining reasonable factors when designing the railway tunnel and cost-effective standards guidelines.

  • PDF

Modal Analysis of an Ultrasonic Tool Horn for RFID TAG Micro-pattern Forming (RFID TAG 미세패턴 성형을 위한 공구혼 진동해석)

  • Kim, Kang-Eun;Lee, Bong-Gu;Choi, Sung-Ju
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.12
    • /
    • pp.652-658
    • /
    • 2016
  • In this paper, the theoretical research and simulation using the Finite Element Method (FEM) to design and form a micro-pattern for an ultrasonic horn is described. The present method is based on an initial design estimate obtained by FEM analysis. The natural and resonant frequencies required for the ultrasonic tool horn used for forming the fine pattern were predicted by finite element analysis. FEM analysis using ANSYS S/W was used to predict the resonant frequency for the optimum technical design of the ultrasonic horn vibration mode shape. When electrical power is supplied to the ultrasonic transducer, it is converted into mechanical movement energy, leading to vibration. The RFID TAG becomes the pattern formed on the insulating sheet by using the longitudinal vibration energy of the ultrasonic tool horn. The FEM analysis result is then incorporated into the optimal design and manufacturing of the ultrasonic tool horn.

Structural Analysis and Shape Optimization for Rotor of Turbomolecular Pump Using P-Method (P-기법을 이용한 터보분자펌프 로터의 구조해석 및 형상최적설계)

  • Won, Bo Reum;Jung, Hae Young;Han, Jeong Sam
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.10
    • /
    • pp.1279-1289
    • /
    • 2013
  • In recent times, turbomolecular pumps (TMPs) have been used frequently to generate and maintain high and clean vacuum. Because of the high-speed rotation of the rotor, its structural safety should be treated as the first design concern. This paper presents the structural analysis and optimization of rotor blades of a TMP. To increase the numerical efficiency in the finite element modeling and analysis, the P-method provided in Pro/ENGINEER was used for simulation. The structural responses for several types of rotor blades were investigated, and the effects of the blade angle, blade length, and round size are thoroughly studied for each type of TMP blade. In addition, structural optimization to reduce and even the maximum stress at each stage of the TMP by changing the size of rounds between the blade and the hub was performed very successfully by using the P-method.

The Optimum Design of Airfoil Shape with Parallel Computation (병렬연산을 이용한 익형의 최적 설계)

  • Jo,Jang-Geun;Park,Won-Gyu
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.1
    • /
    • pp.1-7
    • /
    • 2003
  • The aerodynamic optimization method for airfoil design was described in this paper. The Navier-Stokes equations were solved to consider the viscous flow information around an airfoil. The Modified Method of Feasible Direction(MMFD) was used for sensitivity analysis and the polynomial interpolation was used for distance calculation of the minimization. The Message Passing Interface(MPI) library of parallel computation was adopted to reduce the computation time of flow solver by decomposing the entire computational domain into 8 sub-domains and one-to-one allocating 8 processors to 8 sub-domains. The parallel computation was also used to compute the sensitivity analysis by allocating each search direction to each processor. The present optimization reduced the drag of airfoil while the lift is maintained at the tolerable design value.