• 제목/요약/키워드: shape memory effect

검색결과 215건 처리시간 0.023초

Flexural analysis of thermally actuated fiber reinforced shape memory polymer composite

  • Tiwari, Nilesh;Shaikh, A.A.
    • Advances in materials Research
    • /
    • 제8권4호
    • /
    • pp.337-359
    • /
    • 2019
  • Shape Memory Polymer Composites (SMPC) have gained popularity over the last few decades due to its flexible shape memory behaviour over wide range of strains and temperatures. In this paper, non-linear bending analysis has been carried out for SMPC beam under the application of uniformly distributed transverse load (UDL). Simplified C0 continuity Finite Element Method (FEM) based on Higher Order Shear Deformation Theory (HSDT) has been adopted for flexural analysis of SMPC. The numerical solutions are obtained by iterative Newton Raphson method. Material properties of SMPC with Shape Memory Polymer (SMP) as matrix and carbon fibre as reinforcements, have been calculated by theory of volume averaging. Effect of temperature on SMPC has been evaluated for numerous parameters for instance number of layers, aspect ratio, boundary conditions, volume fraction of carbon fiber and laminate stacking orientation. Moreover, deflection profile over unit length and behavior of stresses across thickness are also presented to elaborate the effect of glass transition temperature (Tg). Present study provides detailed explanation on effect of different parameters on the bending of SMPC beam for large strain over a broad span of temperature from 273-373K, which encompasses glass transition region of SMPC.

Thermomechanical and electrical resistance characteristics of superfine NiTi shape memory alloy wires

  • Qian, Hui;Yang, Boheng;Ren, Yonglin;Wang, Rende
    • Smart Structures and Systems
    • /
    • 제30권2호
    • /
    • pp.183-193
    • /
    • 2022
  • Structural health monitoring and structural vibration control are multidisciplinary and frontier research directions of civil engineering. As intelligent materials that integrate sensing and actuation capabilities, shape memory alloys (SMAs) exhibit multiple excellent characteristics, such as shape memory effect, superelasticity, corrosion resistance, fatigue resistance, and high energy density. Moreover, SMAs possess excellent resistance sensing properties and large deformation ability. Superfine NiTi SMA wires have potential applications in structural health monitoring and micro-drive system. In this study, the mechanical properties and electrical resistance sensing characteristics of superfine NiTi SMA wires were experimentally investigated. The mechanical parameters such as residual strain, hysteretic energy, secant stiffness, and equivalent damping ratio were analyzed at different training strain amplitudes and numbers of loading-unloading cycles. The results demonstrate that the detwinning process shortened with increasing training amplitude, while austenitic mechanical properties were not affected. In addition, superfine SMA wires showed good strain-resistance linear correlation, and the loading rate had little effect on their mechanical properties and electrical resistance sensing characteristics. This study aims to provide an experimental basis for the application of superfine SMA wires in engineering.

Fatigue Properties of Ti-Ni Shape Memory Alloy Wire Welded by Nd: YAG Laser

  • Kim, Y.S.;Kim, J.D.;Kil, B.L.
    • International Journal of Korean Welding Society
    • /
    • 제3권1호
    • /
    • pp.39-44
    • /
    • 2003
  • The welded specimens were made by butt welding of the 2 wires of 50mm length using the pulsed YAG laser. The laser welded wires were tested for investigating the shape memory effect and the ability of super elasticity. The fatigue properties of the welded wires were investigated using the rotary bending fatigue tester specially designed for wires. Moreover, the effect of defocusing distance during laser welding on the static and fatigue properties was Investigated. The shape memory effect and super elasticity of the laser welded wires were approximately identical with that of base metal at the test temperature below 353K. However, the welded wires were broken within elastic limit at the test temperature above 353k. Under the cyclic bending loading conditions, the welded wires could be useful only below the elastic limit, while the base metal had sufficient fatigue life even the stress induced M-phase region. The fatigue strength of the welded wires was about half of that of the base metal. The deterioration of the static and fatigue properties in the welded wires was proven to be from the large difference of the transformation behavior between the base metal and welded part that is caused by vaporization of Ni-content at the welded part during the welding process. The defocusing distance below 3mm acted more largely on lowering the strength of the welded wires than that of 6mm or 8mm.

  • PDF

의탄성 형상기억합금에 대한 현상학적 구성모델 (A Phenomenological Constitutive Model for Pseudoelastic Shape Memory Alloy)

  • 호광수
    • 소성∙가공
    • /
    • 제19권8호
    • /
    • pp.468-473
    • /
    • 2010
  • Shape memory alloys (SMAs) have the ability to recover their original shape upon thermo-mechanical loading even after large inelastic deformation. The unique feature is known as pseudoelasticity and shape memory effect caused by the crystalline structural transformation between two solid-state phases called austenite and martensite. To support the engineering application, a number of constitutive models, which can be formally classified into either micromechanics-based or phenomenological model, have been developed. Most of the constitutive models include a kinetic law governing the crystallographic transformation. The present work presents a one-dimensional, phenomenological constitutive model for SMAs in the context of the unified viscoplasticity theory. The proposed model does not incorporate the complex mechanisms of phase transformation. Instead, the effects induced by the transformation are depicted through the growth law for the back stress that is an internal state variable of the model.

Cyclic behavior of superelastic shape memory alloys (SMAs) under various loading conditions

  • Hu, Jong Wan
    • 도시과학
    • /
    • 제7권1호
    • /
    • pp.5-9
    • /
    • 2018
  • The nickel-titanium shape memory alloy (SMA), referred to as Nitinol, exhibits a superelastic effect that can be restored to its original shape even if a significant amount of deformation is applied at room temperature, without any additional heat treatment after removal of the load. Owing to these unique material characteristics, it has widely used as displacement control devices for seismic retrofitting in civil engineering fields as well as medical, electrical, electronic and mechanical fields. Contrary to ordinarty carbon steel, superelastic SMAs are very resistant to fatigue, and have force-displacement properties depending on loading speed. The change for the mechanical properties of superelastic SMAs are experimentally inviestigated in this study when loading cycle numbers and loading speeds are different. In addition, the standardized force-displacement properties of such superelastic SMAs are proposed with an aim to efficiently design the seismic retrofitting devices made of these materials.

다결정질 Fe-Mn-Si계 형상기억합금의 형상기억합금과 변태점에 미치는 결정입도와 이전가공의 영향 (Effect of Grain Size and Predeformation on Shape Memory Ability and Transformation Temperature in Iron Base Fe-Mn-Si System Shape Memory Alloy)

  • 최종술;김현우;진원;손인진;백승한
    • 열처리공학회지
    • /
    • 제3권1호
    • /
    • pp.34-41
    • /
    • 1990
  • Effects of grain size and cold rolling degree on shape memory ability and transformation temperature were studied in Fe-35% Mn-6% Si shape memory alloy. Md point of the alloy was determined by variation of yield stress with test temperature. The Md point measured in this way was linearly increased with increasing grain size. Shape memory ability of the alloy was decreased with increasing grain size, showing a minimum value at around $63{\mu}m$, and then increased with increasing grain size. From this result, it was concluded that the shape memory ability in the grain size smaller than a critical value is controlled by amount of retained ${\gamma}$ and prior ${\varepsilon}$ phase, but that the shape memory ability in the grain size greater than the critical value is mainly dominated by grain boundary area in unit volume of parent phase. The shape memory ability was decreased with increasing deformation degree. This was because the ${\gamma}$ content being available for the formation of ${\varepsilon}$ martensite during bending was decreased with increasing deformation degree.

  • PDF

NI-Al계 마르텐사이트 합금에서 $Llo{\rightarrow}Ni_5Al_3$ 변태 ($Llo{\rightarrow}Ni_5Al_3$ Transformation in Martensitic Ni-Al Alloys)

  • 지광구;송시연;장우양
    • 열처리공학회지
    • /
    • 제15권2호
    • /
    • pp.65-69
    • /
    • 2002
  • $Llo{\rightarrow}Ni_5Al_3$ reordering and related properties in Ni-Al alloys consisting of 64-65at%Ni are characterized by X-ray diffraction, shape memory effect and damping capacity. Formation of $Ni_5Al_3$ takes place by simple ordering of atoms with a continuous increase in c/a ratio. As a result, degradation of shape memory effect and damping capacity is observed after short time annealing at $200-300^{\circ}C$.

AE 기법을 이용한 TiNi/A16061 형상기억복합재료의 파괴특성평가 (Fracture Characteristic of TiNi/A16061 Share Memory Alloy Composite using Acoustic Emission Technique)

  • 이진경;박영철;구후택;박동성;이규창
    • 대한기계학회논문집A
    • /
    • 제26권2호
    • /
    • pp.275-282
    • /
    • 2002
  • Tensile residual stress happen by difference of coefficients of thermal expansion between fiber and matrix is one of the serious problems in metal matrix composite(MMC). In this study, TiNi fiber was used to solve the tensile residual stress as the reinforced material. TiNi fiber improves the tensile strength of composite by occurring compressive residual stress in matrix using shape memory effect of it. Pre-strain was added to generate compressive residual stress inside TiNi/A16061 composite. It was also evaluated the effect of compressive residual stress corresponding to pre-strains variation. AE technique was used to clarify the microscopic damage behavior at high temperature and the effect of pre-strain difference of TiNi/A16061 shape memory alloy composite.

자성 Co-Ni 계 형상기억합금의 특성 (Characterization of Co-Ni Based Ferromagnetic Shape Memory Alloy)

  • 한지원;박성범
    • 한국안전학회지
    • /
    • 제30권4호
    • /
    • pp.8-13
    • /
    • 2015
  • The magnetic shape memory alloys have recently received a lot of attention due to the considerable progress achieved in understanding the particular importance and the development of the factors. Among these alloys, the ferromagnetic Co-Ni- alloys have been concerned specially because of the thermoelastic character of the fcc (g) - bct (a) martensitic transformation which exhibits under the action of the temperature (shape memory effect), the stress (superelasticity) and the magnetic field (magnetoelasticity). The morphological, the crystallographical, and the thermal characteristics of thermally induced martensite in Co-35.3Ni-11.3Al(wt.%) and Co-28.1Ni-47.4Fe-3.3Ti (wt.%) alloy have been investigated by the scanning electron microscope (SEM), the X-ray Diffraction (XRD), and the differential scanning calorimeter (DSC).

차동식 NiTi-형상기억합금 액츄에이터의 동특성연구 (A study on Bidirectional NiTi-Shape Memory Alloy Actuator)

  • 정상화;김현욱;장우양;김경석;신현성;차경래;나윤철
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2001년도 추계학술대회(한국공작기계학회)
    • /
    • pp.75-79
    • /
    • 2001
  • In the recent years, as the research and the development of micro and precision machinery become active, the interest of micro actuators using SMA(Shape Memory Alloy) has been increased. The dynamic characteristic analysis of SMA is necessary for actuator application and many common researches report the material characteristics of SMA sufficiently. However, the research on dynamic characteristics is very deficient. In this paper, the helical spring are fabricated with NiTi SMA wire of high resistivity, The force, response speed, temperature, and displacement are measured by digital force gauge, infrared thermometer, and laser displacement sensor so that the dynamic characteristics of this SMA is analyzed. Also, bidirectional actuator was fabricated and experimented for its performance.

  • PDF