• Title/Summary/Keyword: shallow water

Search Result 1,391, Processing Time 0.027 seconds

Effects of fended-Water Depth and Reclaimed Wastewater Irrigation on Paddy Rice Culture (담수심과 오수처리수 관개가 벼재배에 미치는 영향)

  • 윤춘경;황하선;정광욱;전지홍
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.45 no.4
    • /
    • pp.55-65
    • /
    • 2003
  • Pilot study was conducted to examine the effects of ponded-water depth and reclaimed wastewater irrigation on paddy rice culture. For the ponded-water depth effect, three treatments of shallow, traditional, and deep water depths were applied, and each treatment was triplicated. The irrigation water for the treatment pots was an effluent from constructed wetland system for sewage treatment, while the control pot was irrigated with tap water kept traditional ponded-water depth. Irrigation water quantity varied with ponded-water depth as expected and drainage water quantity also varied similarly, which implies that shallow irrigation might save irrigation water and also reduce environmental impacts on downstream water quality. Rice growth and production were not significantly affected by ponded-water depth within the experimental condition, instead there was an indication of increased production in shallow and deep ponded-water depths compared to the traditional practice. Raising drainage outlet to the adequate height in paddy dike might be beneficial to save water resources within the paddy field. There was no adverse effect observed in reclaimed wastewater irrigation on the rice production, and mean yield was even greater than the control pots with tap water irrigation although statistically not significant. Water-saving irrigation by shallow ponded-water depth, raising the outlet height in diked rice paddy fields, minimizing forced surface drainage by well-planned irrigation, and reclaimed wastewater irrigation are suggested to save water and protect water quality. However, deviation from traditional farming practices might affect rice growth in long term, and therefore, further investigations are recommended before full scale application.

NUMERICAL ANALYSIS OF THE FLOW AROUND THE HULL AND THE PROPELLER OF A SHIP ADVANCING IN SHALLOW WATER (천수에서 전진하는 선박의 선체 및 추진기 주위 유동 수치 해석)

  • Park, I.R.
    • Journal of computational fluids engineering
    • /
    • v.20 no.4
    • /
    • pp.93-101
    • /
    • 2015
  • This paper provides numerical results of the simulation for the flow around the hull and the propeller of KCS model ship advancing in shallow water conditions. A finite volume method is used to solve the unsteady Reynolds averaged Navier-Stokes(RANS) equations, where the wave-making problem is solved by using a volume-of-fluid(VOF) method. The wave formed near the hull surface in shallow water conditions shows a deep trough dominant pattern that causes the loss of buoyancy followed by hull squat. The flow past the hull increases as the depth of water decreases. However, the axial flow velocity around the stern shows a reduction in magnitude by the effect of shallow water accompanied by the hull-propeller interaction. As a results, the thrust and torque coefficient increase about 8.3% and 6.2%, respectively for a depth of h/T=3.0 corresponding to a depth Froude number of $F_h=0.693$. The resistance coefficient increases about 11.6% at this Froude number condition.

Effects of no-till direct seeding on irrigation water and cost reduction - A field case study (무경운 직파재배가 논 용수량 및 비용절감에 미치는 효과 - 현장 사례 연구)

  • Chung, Sang-Ok;Kim, Ji-Yong
    • Current Research on Agriculture and Life Sciences
    • /
    • v.18
    • /
    • pp.33-42
    • /
    • 2000
  • A field case study was performed to investigate the effect of shallow ponding in paddy field on irrigation water requirement of direct seeded rice. In addition, an economic analysis was made to see the effect of no-till direct seeded rice on cost reduction. A field study was performed at a 2.1ha paddy field in Kimjae city, Chonbuk province from 1991 to 1999. Various direct seeding methods such as dryland seeding, wetland seeding, and no-till wetland seeding were introduced. Then, cost reductions due to the direct seeding and no-till were calculated. In addition, to investigate the effect of shallow ponding on irrigation water requirement, field measurements such as irrigation water volume, drainage water volume, rainfall depth, and ponding depth, were made at a 40a plot within the same area in 1988 and 1990. The results of the shallow ponding study showed that the irrigation water depth, rainfall, and the drainage depth were 379mm, 458mm, and 448mm in 1988 growing season, and 274mm, 819mm, and 736mm in 1990, respectively. The shallow ponding irrigation method saved irrigation water by about 20% with higher yield compared with the traditional method. The economic analysis showed that won \640,000 per ha can be saved by direct seeding due to no nursery cost, and \1,220,000 per ha due to no-till and no nursery cost. The yields ranged 540 to 640 kg per 10a during the study period with an average of 590kg per 10a. If these cropping techniques with no-till direct seeding and shallow ponding depth for rice cropping prove to be advantageous with further study, they can be adopted for the most of the paddy fields in Korea.

  • PDF

Effect of subsurface flow and soil depth on shallow landslide prediction

  • Kim, Minseok;Jung, Kwansue;Son, Minwoo;Jeong, Anchul
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.281-281
    • /
    • 2015
  • Shallow landslide often occurs in areas of this topography where subsurface soil water flow paths give rise to excess pore-water pressures downslope. Recent hillslope hydrology studies have shown that subsurface topography has a strong impact in controlling the connectivity of saturated areas at the soil-bedrock interface. In this study, the physically based SHALSTAB model was used to evaluate the effects of three soil thicknesses (i.e. average soil layer, soil thickness to weathered soil and soil thickness to bedrock soil layer) and subsurface flow reflecting three soil thicknesses on shallow landslide prediction accuracy. Three digital elevation models (DEMs; i.e. ground surface, weathered surface and bedrock surface) and three soil thicknesses (average soil thickness, soil thickness to weathered rock and soil thickness to bedrock) at a small hillslope site in Jinbu, Kangwon Prefecture, eastern part of the Korean Peninsula, were considered. Each prediction result simulated with the SHALSTAB model was evaluated by receiver operating characteristic (ROC) analysis for modelling accuracy. The results of the ROC analysis for shallow landslide prediction using the ground surface DEM (GSTO), the weathered surface DEM and the bedrock surface DEM (BSTO) indicated that the prediction accuracy was higher using flow accumulation by the BSTO and weathered soil thickness compared to results. These results imply that 1) the effect of subsurface flow by BSTO on shallow landslide prediction especially could be larger than the effects of topography by GSTO, and 2) the effect of weathered soil thickness could be larger than the effects of average soil thickness and bedrock soil thickness on shallow landslide prediction. Therefore, we suggest that using BSTO dem and weathered soil layer can improve the accuracy of shallow landslide prediction, which should contribute to more accurately predicting shallow landslides.

  • PDF

On the Wave Load of Tanker Model in a Shallow Water (특수선(特殊船) 설계(設計)에 관한 연구(硏究) -유조선(油槽船)의 천수중(淺水中)에서의 파랑하중(波浪荷重)-)

  • Z.G.,Kim;J.H.,Hwang;H.,Kim;J.M.,Yoo
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.17 no.2
    • /
    • pp.17-20
    • /
    • 1980
  • The shearing forces and bending moments acting on the tanker model[1] of $C_B$ 0.82 in regular oblique waves of shallow water are investigated by numerical calculations. The new strip method was adopted. It is concluded that in the shallow water shearing forces and the bending moments acting on the tanker model are higher than those of deep water waves by the present numerical investigations. The wave bending moment at the midship section is roughly twice of deep water value in the shallow of H/T less than 2. in this calculation.

  • PDF

Characterization of Increases in Volumetric Water Content in Soil Slopes to Predict the Risk of Shallow Failure (토사비탈면 표층붕괴 위험 예측을 위한 체적함수비 증가 특성 연구)

  • Suk, Jae-Wook;Kang, Hyo-Sub;Choi, Sun-Gyu;Jeong, Hyang-Seon;Song, Hyo-Sung
    • The Journal of Engineering Geology
    • /
    • v.30 no.4
    • /
    • pp.485-496
    • /
    • 2020
  • The characteristics of volumetric water content changes in soil slopes were studied here in an effort to identify the signs of heavy rain causing shallow slope failure. Volumetric water contents in cases with and without shallow failure were measured in flume and test-bed experiments. Measurement data from 282 experiments of both types revealed that the volumetric water content gradient in shallow failure events ranged from 0.072 to 0.309. In non-failure cases, the range was 0.01~0.32. Therefore, this one specific value cannot predict shallow slope failure. However, as the volumetric water content gradient increased, there was a clear tendency to shallow failure. By using this trend, criteria for four warning levels are suggested.

Shallow Water Wave Hindcasting by the Combination of MASCON and SWAN Models (지형을 고려한 해상풍 모델(MASCON)과 SWAN 모델의 결합에 의한 천해파랑 산정)

  • Kim, Ji-Min;Kim, Chang-Hoon;Kim, Do-Sam;Hur, Dong-Soo
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.19 no.1
    • /
    • pp.57-65
    • /
    • 2007
  • Shallow water waves are hindcasted from sea wind fields, which include wave transformations such as shoaling, refraction, diffraction, reflection and wave breaking. In case of estimating sea wind field in shallow water, the sea wind revised from free wind obtained by the typhoon model is widely used. However, this method is not able to consider the effect of land topography on the wind field, which will be important factor for shallow water wave forecasting and hindcasting. In this study, therefore, the effect of land topography on sea wind field in shallow water is investigated for shallow water wave forecasting and hindcasting with high accuracy. The 3-D MASCON model is introduced to consider the influence of land topography on the wind field. And, for two areas divided by the topographical characteristics, i.e. shielded and opened coastal areas, sea wind field is examined by comparison between initial wind field by typhoon model and modified wind field by 3-D MASCON model. Finally, applying these sea wind fields to SWAN model, the results of shallow water wave calculated in shielded and opened coastal areas are compared, and, also, the effect of MASCON model on shallow water wave forecasting and hindcasting is discussed.

Impact Assessment of Liquid Manure Application on Soil and Shallow Groundwater in Poplar Experimental Site (액비 시비에 따른 포플러시험포 토양수 및 천층지하수 수질 영향 평가)

  • Hong, Eun-Mi;Choi, Jin-Yong;Nam, Won-Ho;Lee, Sang-Hyun;Yoo, Seung-Hwan
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.57 no.1
    • /
    • pp.25-35
    • /
    • 2015
  • As livestock manure treatment is becoming a problem, manure application in forest plantation is recommended as an alternative. In this study, to investigate the impact due to liquid manure application in forest plantation, soil, soil water and shallow groundwater quality had been monitored in poplar experimental site where the liquid manure (LM) was applied. Water samples were collected weekly during growing season (April to October) from 2008 to 2011. From the monitoring results, phosphorus concentration in the soil and soil water had no significant difference between LM and control plots. $NO_3$-N concentration of soil water in LM, however, showed higher concentration (13.6 mg/l at 40 cm, 35.1 mg/l at 80 cm) than control plot (1.5 mg/l at 40 cm, 0.5 mg/l at 80 cm). In case of shallow groundwater quality, pH, heavy metal, etc. were satisfied to the national agricultural water quality standard of groundwater and there were no significant difference between upstream and downstream. The $NO_3$-N concentration of shallow groundwater was also not exceeded the national drinking water standard. However, $NO_3$-N concentration in soil water and downstream of shallow groundwater had increased in 2011 when non-composted LM was applied mostly in non-growing season of tree (September). From the results, it is important to control nitrogen source, application time and decomposed or not when LM is applied. In addition, to investigate nitrate source, further long-term monitoring and modelling could be necessary.

Effects of ponding depth treatment on evapotranspiration in paddy fields (담수심 처리가 논의 증발산량에 미치는 영향)

  • Sohn, Seung-Ho;Park, Ki-Jung;Chung, Sang-Ok
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.9-12
    • /
    • 2002
  • The purpose of this study was to investigate the effects of ponding depth treatment on evapotranspiration in paddy fields. Three poding depth treatments, very sallow, shallow, and deep were used. The experimental plots were three $80m{\times}8m$ rectangular plots. Daily values of rainfall amount, ponding depth, irrigation water, drainage water, evapotranspiration, and infiltration were measured in the field. The ponding depth was continuously observed by observed nstaff during the growing season. The ET was measured by 1m diameter PVC lysimeters. Irrigation water volume was measured by 75 mm pipe flow-meters and the drainage water volume by 75 mm pipe flow-meters and a recording parshall flume. The results showed that irrigation water depths were 688.9 mm, 513.6 mm, and 624.4 mm in 2001, and 356.9 mm, 428.6 mm, and 513.2 mm in 2002 in very shallow, shallow, and deep ponding, respectively. The evapotranspiration were 465.0 mm, 484.1 mm, and 415.1 mm in 2001 and 461.3 mm, 476.3 mm, and 470.6 mm in 2002 in very shallow, shallow, and deep ponding, respectively.

  • PDF

THE FORMAL LINEARIZATION METHOD TO MULTISOLITON SOLUTIONS FOR THREE MODEL EQUATIONS OF SHALLOW WATER WAVES

  • Taghizadeh, N.;Mirzazadeh, M.;Paghaleh, A. Samiei
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.25 no.3
    • /
    • pp.381-391
    • /
    • 2012
  • In this paper, the formal linearization method is used to construct multisoliton solutions for three model of shallow water waves equations. The three models are completely integrable. The formal linearization method is an efficient method for obtaining exact multisoliton solutions of nonlinear partial differential equations. The method can be applied to nonintegrable equations as well as to integrable ones.