• Title/Summary/Keyword: shallow gas

Search Result 96, Processing Time 0.028 seconds

Shallow gas origin in the sediment near coastal area of Busan (부산 주변 해역 해저 퇴적물 내 공기층 가스 기원)

  • Kim, Ji-Hoon;Han, Hyun-Chul;Cheong, Tae-Jin;Lee, Young-Joo
    • The Korean Journal of Petroleum Geology
    • /
    • v.13 no.1
    • /
    • pp.24-29
    • /
    • 2007
  • The main purpose of this study is to identify the shallow gas origin in the KSSM zone. Based on the results of gas composition and isotope in the headsapace gas, the shallow gas is mainly composed of methane and carbon and deuterium isotopes (${\delta}^{13}CCH_4$ and ${\delta}DCH_4$) of methane has ranged from -93.4%o to -70.9%, and from -228%o to -199%o in each. These results imply that shallow gas has predominately biogenic source by $CO_2$ reduction rather than thermogenic. The carbon isotopic separation (${\varepsilon}_c$) between methane and carbon dioxide $(CO_2)$ has a range of 54.4 to 72.2, it also supports biogenic origin of shallow gas.

  • PDF

Hydrocarbons in shallow sediments of the western Ulleung Basin (서부 울릉분지 천부 퇴적층의 탄화수소)

  • Ryu, Byong-Jae;Kim, Ji-Hoon;Lee, Young-Joo;Kim, Il-Soo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.597-599
    • /
    • 2007
  • Studies on the hydrocarbons in shallow sediments of the East Sea of Korea have been carried out by the Korea Institute of Geoscience and Mineral Resources (KIGAM) since 2000. 4946 L-km of 2D multichannel reflection seismic data, 3250 L-km of high-resolution Chirp profiles and 16 selected piston cores were analyzed to determine the presence of hydrocarbons in shallow sediments of the western deep-water Ulleung Basin. The seismic data show a number of blanking zones that probably reflect widespread fluid and gas venting. The blanking zones are often associated with velocity pull-up structures. These upwelling structures are interpreted to be the result of high-velocity natural gas hydrate. There are also several bottom-simulating reflectors that are associated with free gas and probably overlying gas hydrate. Numerous pockmarks were also observed in the Chirp profiles. They are seafloor depressions caused by the removal of near-seafloor soft sediments by escaping of fluid and gas. In piston cores, cracks generally oriented parallel to bedding suggest significant gas content some of which may have been contained in gas hydrate in situ.

  • PDF

Investigation of Hydrate Inhibition System for Shallow Water Gas Field: Experimental Evaluation of KHI and Simulation of MEG Regeneration Process

  • Lee, Suk;Kim, Hyunho;Park, Ki-Heum;Seo, Yutaek
    • Journal of Ocean Engineering and Technology
    • /
    • v.34 no.5
    • /
    • pp.342-350
    • /
    • 2020
  • In this study, a hydrate inhibition system is investigated for shallow water gas fields. Mono-ethylene glycol (MEG) injection has been used as a typical method for inhibiting hydrate formation in gas fields; therefore, most offshore platforms are equipped with MEG injection and regeneration processes. A recent application of a kinetic hydrate inhibitor (KHI) has reduced the total volume of MEG injection and hence reduce the operating cost. Experiments are designed and performed to evaluate and verify the KHI performance for inhibiting hydrate formation under shallow water conditions. However, the shut-in and restart operation may require the injection and regeneration of MEG. For this operation, the MEG concentration must be optimized while considering the cost of MEG regeneration. The obtained results suggest that decreasing MEG concentration from 80 wt% to 70 wt% can reduce the life cycle cost (LCC) of MEG regeneration process by approximately 5.98 million USD owing to reduced distillation column cost. These results suggest that the hydrate inhibition system must be evaluated through well-designed experiments and process simulations involving LCC analysis.

Geochemical and Geophysical Characteristics of Shallow Gases in the Deep Sea Sediments, Southwestern Ulleung Basin (울릉분지 남서부 심해저 퇴적층에 분포하는 천부 가스의 지화학 및 지구물리 특성)

  • 김일수;이영주;유동근;류병재
    • Economic and Environmental Geology
    • /
    • v.36 no.3
    • /
    • pp.149-157
    • /
    • 2003
  • Deep sea core samples were taken in the southwestern part of the Ulleung Basin in order to characterize the properties of shallow gases in the sediment. Amount of shallow gases in the sediments were calculated by head space techniques, and chemical and isotopic compositions of hydrocarbon gases were analyzed. Geochemical analyses were carried out on the gas bearing sediments to find out relationship between natural gas contents and organic characteristics of the sediments. Seismic characteristics of shallow gases in the sediments were also examined in this study. The amount of the hydrocarbon gases in the sediments range from 0.01% to 11.25%. Calculation of volume of gas per volume of wet sediment varies from 0.1 to 82.0 ml HC/L wet sediment. Methane consists 98% of the total hydrocarbon gases except for two samples. Based on the methane content and isotopic composition$(\delta^{13}c)$: -94.31$\textperthousand$~-55.5$\textperthousand$), the hydrocarbon gases from the sediments are generated from bacterial activities of methanogenic microbes. Contents of hydrocarbon gases are variable from site to site. Volume of shallow gases in the sediments shows no apparent trends vs. either characteristics of organic matter or particle sizes of the sediments. Gas concentration is high in the area of seismic anomalies such as blanking zone or chimney structures in the section. Physicochemically the pore water and the formation water systems are saturated with gases in these areas. Concentration of hydrocarbon gases in the sediments in these area shows favorable condition for generation of gas hydrate, as far as the other conditions are satisfied.

3.5kHz seismic images of the gas-charged shallow sediment at Kwangyang Bay and the Yeosu Sound on the southern coast of Korea (광양만과 여수해만의 가스함유 표층퇴적물의 3.5kHz 탄성파 영상)

  • 오진용
    • Economic and Environmental Geology
    • /
    • v.33 no.3
    • /
    • pp.239-246
    • /
    • 2000
  • The 3.5kHz sub-bottom profiling was carried out over both Gwangyang Bay and the Yeo Sound . High -resolution digital images of uppermost sediment layers are obtained from the field data which were originally recorded in analog mode. Most prominent feature along the acoustic profiles is the chaotic reflections which imply the presence of shallow gas within the silty sediments. In the western part of Gwangyang Bay, the gas-charged sediments are assoicated with the acoustic turbidity of the blanket type. Across the Seomjin Delta in the eastern part of Gwangyang Bay, the gas-charged seismic facies are observed just beneath the sea bottom. In the western Yeoul Sound , the gassy seiments occur widely , whereas it is rare in the eastern counterpart with the <30-m-deep channel. We postulate that this gas was biogenetically produced within the organic-rich deposits.

  • PDF

The Characteristics of Shallow Groundwater in Petroleum Contaminated Site and the Assessment of Efficiency of Biopile by Off-gas Analysis (유류오염지역의 지하수 수질특성과 토양가스 분석을 통한 바이오파일의 효율평가)

  • Cho, Chang-Hwan;Sung, Ki-June
    • Journal of Soil and Groundwater Environment
    • /
    • v.18 no.2
    • /
    • pp.36-44
    • /
    • 2013
  • The objectives of this study were to identify the characteristics of shallow groundwater from the oil-contaminated site for a long period and to evaluate the applicability of biopile technology to treat the soil excavated from it. The eight monitoring wells were installed in the contaminated site and pH, Electrical Conductivity (EC), Dissolved Oxygen (DO), Oxidation Reduction Potential (ORP), Temperature and the concentrations of major ions and pollutants were measured. The VOCs in soil gas were monitored during biopile operation and TPH concentration was analyzed at the termination of the experiment. The pH was 6.62 considered subacid and EC was 886.19 ${\mu}S/cm$. DO was measured to be 2.06 mg/L showing the similar characteristic of deep groundwater. ORP was 119.02 mV indicating oxidation state. The temperature of groundwater was measured to be $16.97^{\circ}C$. The piper diagram showed that groundwater was classified as Ca-$HCO_3$ type considered deep groundwater. The ground water concentration for TPH, Benzene, Toluene, Xylene of the first round was slightly higher than that of the second round. The concentration of carbon dioxide of soil gas was increased to 1.3% and the concentration of VOCs was completely eliminated after the 40 days. The TPH concentration showed 98% remediation efficiency after the 90 days biopile operation.

Geochemistry of Shallow gases taken from the core sediments in the southeastern Ulleung Basin (울릉분지 남동부 시추 퇴적물 내에 함유되어 있는 천부가스의 특성)

  • Lee Young joo;Huh Shik;Kwak Young hoon;Kim Hag ju;Chun Jong Hwa;Jun Sang Joon;Yoo Hai Soo
    • The Korean Journal of Petroleum Geology
    • /
    • v.7 no.1_2 s.8
    • /
    • pp.35-40
    • /
    • 1999
  • Chemical and isotopic compositions of hydrocarbon gases were analyBed to characterize the properties of the shallow gases distributed in the southeastern part of the Ulleung Basin, offshore Korea. Sediments from the core were also analyzed to determine the characteristics and relationship to shallow gases. Hydrocarbon gases in the sediments consisted of methane (697.9-6054.4 ppm), ethane, propane, butane and hexane. The total carbon content of the sediments ranges from 1.84fe to $5.11{\%}$ and the total organic carbon content ranges from $0.29{\%} \;to\; 2.65{\%}$. High C/N ratio (>10) indicates that input of terrestrial organic matter was prevalent at the time of deposition. The methane content and stable isotopic data indicate that hydrocarbon gases from the sediments are identified to be thermogenic gas and mixture of both biogenic and thermal gases. Based on the Rock-Eval and carbon isotopic data, the level of thermal maturity of organic matter in the sediments $(Tmax<425^{\circ}C)$ is lower than that of gas. It suggests that thermal gases in the sediments migrated from the deeper sediments than the penetrated depth.

  • PDF

Gas Hydrate Systems at Hydrate Ridge;Results from ODP Leg 204

  • Lee, Young-Joo;Kim, Ji-Hoon;Ryu, Byong-Jae
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.531-533
    • /
    • 2007
  • We report and discuss molecular and isotopic properties of hydrate-bound gases from 55 samples and void gases from 494 samples collected during Ocean Drilling Program (ODP) Leg 204 at Hydrate Ridge offshore Oregon. Gas hydrates appear to crystallize in sediments from two end-member gas sources (deep allochthonous and in situ) as mixtures of different proportions. In an area of high gas flux at the Southern Summit of the ridge (Sites 1248-1250), shallow (0-40 meters below the seafloor (mbsf)) gas hydrates are composed of mainly allochthonous mixed microbial and thermogenic methane and a small portion of thermogenic C2+ gases, which migrated vertically and laterally from as deep as 2-2.5 km depths. In contrast, deep (50-105 mbsf) gas hydrates at the Southern Summit (Sites 1248 and 1250) and on the flanks of the ridge (Sites 1244-1247) crystallize mainly from microbial methane and ethane generated dominantly in situ. A small contribution of allochthonous gas may also be present at sites where geologic and tectonic settings favor vertical gas migration from greater depth (e.g., Site 1244).

  • PDF

Shallow Gas Exploration in the Pohang Basin Transition Zone (포항분지 전이대에서 천부가스 탐사)

  • Lee, Donghoon;Kim, Byoung-Yeop;Kim, Ji-Soo;Jang, Seonghyung
    • Geophysics and Geophysical Exploration
    • /
    • v.25 no.1
    • /
    • pp.1-13
    • /
    • 2022
  • For surveying shallow gas reservoirs in the Pohang basin, we proposed a seismic exploration method applicable to the transition zone in which land and marine areas are connected. We designed the seismic acquisition geometry considering both environments. We installed land nodal receivers on the ground and employed vibroseis and airgun sources in both land and marine areas. For seismic exploration in the transition zone, specific acquisition and processing techniques are required to ensure precise matching of reflectors at the boundary between the onshore and offshore regions. To enhance the continuity of reflection events on the seismic section, we performed amplitude and phase corrections with respect to the source types and applied a static correction. Following these processing steps, we obtained a seismic section showing connected reflectors around the boundary in the transition zone. We anticipate that our proposed seismic exploration method can also be used for fault detection in the transition zone.

플라즈마 도핑 후 급속열처리법을 이용한 n+/p 얕은 접합 형성

  • Do, Seung-U;Seo, Yeong-Ho;Lee, Jae-Seong;Lee, Yong-Hyeon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.50-50
    • /
    • 2009
  • In this paper, the plasma doping is performed on p-type wafers using $PH_3$ gas(10 %) diluted with He gas(90 %). The wafer is placed in the plasma generated with 200 W and a negative DC bias (1 kV) is applied to the substrate for 60 sec under no substrate heating. the flow rate of the diluted $PH_3$ gas and the process pressure are 100 sccm and 10 mTorr, respectively. In order to diffuse and activate the dopant, annealing process such as rapid thermal annealing (RTA) is performed. RTA process is performed either in $N_2$, $O_2$ or $O_2+N_2$ ambient at $900{\sim}950^{\circ}C$ for 10 sec. The sheet resistance is measured using four point probe. The shallow n+/p doping profiles are investigated using secondary ion mass spectromtry (SIMS). The analysis of crystalline defect is also done using transmission electron microscopy (TEM) and double crystal X-ray diffraction (DXRD).

  • PDF