• Title/Summary/Keyword: shallow cable

Search Result 20, Processing Time 0.034 seconds

Load deformation characteristics of shallow suspension footbridge with reverse profiled pre-tensioned cables

  • Huang, Ming-Hui;Thambiratnam, David P.;Perera, Nimal J.
    • Structural Engineering and Mechanics
    • /
    • v.21 no.4
    • /
    • pp.375-392
    • /
    • 2005
  • Cable supported structures offer an elegant and economical solution for bridging over long spans with resultant low material content and ease of construction. In this paper, a model of shallow cable supported footbridge with reverse profiled pre-tensioned cables is treated and its load deformation characteristics under different quasi-static loads are investigated. Effects of important parameters such as cable sag and pre-tension are also studied. Numerical results performed on a 3D model show that structural stiffness of this bridge (model) depends not only on the cable sag and cross sectional areas of the cables, but also on the pre-tension in the reverse profiled cables. The tension in the top supporting cables can be adjusted to a high level by the pre-tension in the reverse profiled bottom cables, with the total horizontal force in the bridge structure remaining reasonably constant. It is also evident that pre-tensioned horizontally profiled cables can greatly increase the lateral horizontal stiffness and suppress the lateral horizontal deflection induced by eccentric vertical loads.

Static and free vibration analysis of shallow sagging inclined cables

  • Li, Zhi-Jiang;Li, Peng;He, Zeng;Cao, Ping
    • Structural Engineering and Mechanics
    • /
    • v.45 no.2
    • /
    • pp.145-157
    • /
    • 2013
  • Based on link-model, we conducted a static analysis and computation of a three-span suspended cable structure in the present paper, and obtained the static configuration and tension distribution of the cable. Using the link and beam model based on finite element method, we analyzed the vibration modal of three-span suspended cable structure, and compared with the results obtained from ANSYS using link and beam element. The vibration modals of shallow sagging inclined cables calculated from proposed method agrees well with ANSYS results, which validates the proposed method. As a result, the influence of bend stiffness on in-plane natural frequencies is much greater than that on out-of-plane natural frequencies of inclined cables.

Active feedback control for cable vibrations

  • Ubertini, Filippo
    • Smart Structures and Systems
    • /
    • v.4 no.4
    • /
    • pp.407-428
    • /
    • 2008
  • The nonlinear mechanics of cable vibration is caught either by analytical or numerical models. Nevertheless, the choice of the most appropriate method, in consideration of the problem under study, is not straightforward. A feedback control policy might even enhance the complexity of the system. Thus, in order to design a suitable controller, different approaches are here adopted. Devices mounted transversely to the cable in the two directions, close to one of its ends, supply the feedback control action based on the observation of the response in a few points. The low order terms of the control law are, at first, analyzed in the framework of linear models. Explicit analytic solutions are derived for this purpose. The effectiveness of high order terms in the control law is then explored by means of a finite element model(FEM), which accounts for high order harmonics. A suitably dimensional analytical Galerkin model is finally derived, to investigate the effectiveness of the proposed control strategy, when applied to a physical model.

Ultra High Resolution Shallow Acoustic Profiling using the Parametric Echo Sounder: Discrimination of Marine Contaminated Sediments and Burial Depth Inspection of the Submarine Cable (비선형 측심기를 이용한 초고해상 천부음향탐사: 오염퇴적층 구분과 해저케이블 매설 검측)

  • Jung, Seom-Kyu;Lee, Yong-Kuk;Kim, Seong-Ryul;Oh, Jae-Kyung
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.34 no.8
    • /
    • pp.1222-1229
    • /
    • 2010
  • Compared to conventional high resolution acoustic profiling, ultra high resolution shallow acoustic profiling using parametric echo sounder is limited in penetration, yet it provides resolution suitable for detailed seabed investigation in the shallow waters. The parametric sub-bottom profiler system provides not only the exact determination of water depth, but also the detailed information about sediment layers and sub-bottom structures. Possible applications include dredging project, search of buried pipeline, ship wrecks, and other artificial objects through the detailed mapping of thickness and structure of the upper sedimentary layers. In this study, contaminated sediments were discriminated by the correlation of ultra high resolution profiles with geologic data. In addition, the burial depth of the submarine cable was measured by the interpretation of acoustic anomalies in the profiles.

Case Study of Ultra High Resolution Shallow Acoustic Profiling - Discrimination of the Marine Contaminated Sediment and Burial Depth Inspection of Submarine Cable (초고해상 천부음향탐사 사례 - 오염퇴적층 구분과 해저케이블 매설 검측)

  • Jung, Baek-Hoon;Lee, Yong-Kuk;Kim, Seong-Ryul;Shin, Dong-Hyeok;Jou, Hyeong-Tae
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.79-84
    • /
    • 2008
  • Compared to conventional high resolution acoustic profiling, ultra high resolution shallow acoustic profiling is limited in penetration, yet it provides resolution suitable for detailed seabed investigation in the shallow waters. Possible applications include search of buried pipeline, ship wrecks, and other artificial objects through the detailed mapping of thickness and structure of the upper sedimentary layers. In this study, contaminated sediments were discriminated by the correlation of ultra high resolution profiles with geologic data. In addition, the burial depth of submarine cable was measured by the interpretation of acoustic anomalies in the profiles.

  • PDF

Experiments on the Submarine Cable Protection Methods Considering the Connection Type (체결형상을 고려한 해저케이블 보호공법에 관한 실험)

  • Yoon, Jae Seon;Ha, Taemin
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.329-329
    • /
    • 2017
  • In this study attempted to evaluate the stability of the protection methods by examining hydraulic characteristics of the area around the point in which marine cable protector is installed such as surf zone occurrence point of shore-end submarine cables suitable for coastal marine environmental conditions, flow rate t the tope of the protector and maximum wave height, and to provide basic data for the selection of the optimal protection method. In performing hydraulic model experiments, the topography of submarine cable installation location was reproduced in 2-D sectional channel, and models appropriate for experimental scale and similitude law were produced and installed for each condition of submarine cables and protectors. Since the topography and submarine cable protectors were reproduced and installed in 2-D sectional channel, the exact reproduction of surf and transformation in shallow water zone was possible, and thus the physical properties could be clearly analyzed. For stability review, an experiment to examine the stability was conducted using a wave maker with 50-year frequency design waves as target, and wave height and cycles were applied based on the approximate lowest low water level(Approx. L.L.W), which is the most dangerous in submarine cable protection methods. As for experimental time, typhoon passing time in summer (about 3 hours) was applied, and wave patterns and deviation ratio of the submarine cable protector were investigated after making irregular waves corresponding to design waves. In addition, current meter and wave height meter were installed at the installation location of the submarine cable protector, and the flow rates and wave height at the top of the protector were measured and analyzed to review hydraulic properties.

  • PDF

A Study on the Integrated Seismic Reflection and Refraction for Shallow Marine Site Survey KSEG.KGS Joint Symposium (천해저 조사를 위한 탄성파 반사법 및 굴절법 통합연구)

  • Kim, Chan-Su;Lee, Sang-Chul;Shin, Sung-Ryul;Kim, Hyun-Do;Jo, Chul-Hyun
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.349-352
    • /
    • 2007
  • Estimating the physical properties of the survey area and mapping the geotechnical basement play an important role in ocean engineering and construction field. In this study, we performed marine seismic reflection and refraction survey as an engineering application at shallow marine. We made use of the dual boomer - single channel streamer as a source-receiver in reflection seismic survey and air-gun source - the manufactured OBC(Ocean Bottom Cable)-type streamer in refraction survey. In the seismic reflection data, we could easily find the geological layers and basement. Moreover, seismic refraction data could present sediment thickness and velocity distribution.

  • PDF

Compatible Anchors of Silt Protector in Shallow Sea with Mud Seafloor Material (천해역 점성토 지반에 적합한 오탁방지막 기초 앵커)

  • KWEON GI-CHUL;HONG NAM-SEEG;SONG Mu-HYO;CHOI CHANG-GYU
    • Journal of Ocean Engineering and Technology
    • /
    • v.17 no.3 s.52
    • /
    • pp.7-12
    • /
    • 2003
  • The Navy has tested the holding capacity of many kinds of anchors in order to propose the design chart for the holding capacity of drag-embedment anchors. The design chart is only applicable up to the cable bottom angle 60 when load is raised to the ultimate weight. However, the anchor experiences a significant uplift force when the angle is above 60 in shallow seas. In this paper, the procedure for the estimation of the holding capacity of anchors in mud is proposed. Drag-embedment anchors do not function well when there is a significant uplift component of load in soft seafloor materials, such as mud. Under these loading and seafloor conditions, gravity anchors seems to be more efficient. However, they are too heavy for their holding capacity. Therefore, suction pile (hollow concrete block) is more beneficial to the foundntion of silt protector in shallow sea with mud seafloor materials.

Dynamic characteristics between waves and a floating cylindrical body connected to a tension-leg mooring cable placed in a simulated offshore environment

  • Song, Juhun;So, Soo-Hyun;Lim, Hee-Chang
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.8 no.4
    • /
    • pp.375-385
    • /
    • 2016
  • Given the rapid progress made in understanding the dynamics of an offshore floating body in an ocean environment, the present study aimed to simulate ocean waves in a small-sized wave flume and to observe the motion of a cylindrical floating body placed in an offshore environment. To generate regular ocean waves in a wave flume, we combined a wave generator and a wave absorber. In addition, to precisely visualise the oscillation of the body, a set of light-emitting diode illuminators and a high-speed charge-coupled device camera were installed in the flume. This study also focuses on the spectral analysis of the movement of the floating body. The wave generator and absorbers worked well to simulate stable regular waves. In addition, the simulated waves agreed well with the plane waves predicted by shallow-water theory. As the period of the oncoming waves changed, the movement of the floating body was substantially different when tethered to a tension-leg mooring cable. In particular, when connected to the tension-leg mooring cable, the natural frequency of the floating body appeared suddenly at 0.391 Hz as the wave period increased.