• Title/Summary/Keyword: shaking test

Search Result 540, Processing Time 0.021 seconds

Evaluation of Displacement-based Approaches for a Shear Wall Structure (전단벽구조체에 대한 변위기반 내진성능법의 평가)

  • 최상현;현창헌;최강룡;김문수
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.10a
    • /
    • pp.465-472
    • /
    • 2003
  • In this paper, the displacement-based seismic design approaches are evaluated utilizing shaking-table test data of a 1:3 scaled reinforced concrete (RC) bearing wall structure Provided by IAEA. The maximum responses of the structure are estimated using the two prominent displacement-based approaches, i.e., the capacity spectrum method and the displacement coefficient method, and compared with the measured responses. For comparison purpose, linear and nonlinear time history analyses and response spectrum analysis are also performed. The results indicate that the capacity spectrum method underestimates the response of the structure In inelastic range while the displacement coefficient method yields reasonable values in general.

  • PDF

Seismic mitigation of an existing building by connecting to a base-isolated building with visco-elastic dampers

  • Yang, Zhidong;Lam, Eddie S.S.
    • Structural Engineering and Mechanics
    • /
    • v.53 no.1
    • /
    • pp.57-71
    • /
    • 2015
  • This study investigates the feasibility of retrofitting an existing building by connecting the existing building to a new building using connecting dampers. The new building is base-isolated and viscoelastic dampers are assigned as connecting dampers. Scaled models are tested under three different earthquake records using a shaking table. The existing building and the new building are 9 and 8 stories respectively. The existing building model shows more than 3% increase in damping ratio. The maximum dynamic responses and the root mean square responses of the existing building model to earthquakes are substantially reduced by at least 20% and 59% respectively. Further, numerical models are developed by conducting time-history analysis to predict the performance of the proposed seismic mitigation system. The predictions agree well with the test results. Numerical simulations are carried out to optimize the properties of connecting dampers and base isolators. It is demonstrated that more than 50% of the peak responses can be reduced by properly adjusting the properties of connecting dampers and base isolators.

Constitutive models of concrete structures subjected to seismic shear

  • Laskar, Arghadeep;Lu, Liang;Qin, Feng;Mo, Y.L.;Hsu, Thomas T.C.;Lu, Xilin;Fan, Feng
    • Earthquakes and Structures
    • /
    • v.7 no.5
    • /
    • pp.627-645
    • /
    • 2014
  • Using OpenSees as a framework, constitutive models of reinforced, prestressed and prestressed steel fiber concrete found by the panel tests have been implemented into a finite element program called Simulation of Concrete Structures (SCS) to predict the seismic behavior of shear-critical reinforced and prestressed concrete structures. The developed finite element program was validated by tests on prestressed steel fiber concrete beams under monotonic loading, post tensioned precast concrete column under reversed cyclic loading, framed shear walls under reversed cyclic loading or shaking table excitations, and a seven-story wall building under shake table excitations. The comparison of analytical results with test outcomes indicates good agreement.

Shake Table Tests for the Evaluation of Seismic Behavior of SRC Piers (SRC 교각의 내진거동 평가를 위한 진동대 실험)

  • Shim, Chang-Su;Chung, Young-Soo;Han, Jung-Hoon;Park, Ji-Ho;Jeon, Seung-Min
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.305-308
    • /
    • 2006
  • In this paper, the seismic performance of SRC piers for near fault motions was evaluated by shaking table tests on small scale models. Dead load of the superstructures was simulated by axial prestress at the center of the column section. A mass frame linked with steel bars was fabricated to include the effect of superstructure mass. Friction of the mass frame when it moves was minimized by special details and it was proved before tests. Five pier models with 400mm diameter were tested by increasing the acceleration of the near fault motion. Test results were discussed and compared with previous quasi-static tests.

  • PDF

Evaluation of Seismic Responses of Isolated Bridges Considering the Flexibility of Piers (교각의 강성을 고려한 지진격리교량의 응답특성 평가)

  • Seo, Hyun-Woo;Kim, Nam-Sik;Cheung, Jin-Hwan
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.662-665
    • /
    • 2004
  • In this paper, based on shaking table test results on a seismically isolated bridge model, an inelastic numerical model is refined by using Bouc-Wen model representing the hysteretic behavior of isolators. Seismic responses of isolated bridges are numerically investigated varying with relative stiffness ratios, which is a ratio of the effective stiffness of isolator to the lateral stiffness of bridge pier. From the results, it is found that an adequate range of relative stiffness ratio could be defined for seismic design of isolated bridges without considering the flexibility of piers.

  • PDF

An Experimental Study on the Base Isolation of Equipments using Small-Scale Laminated Rubber Bearings (축소 적층고무베어링을 설치한 시설물의 지반진동 분리에 관한 실험 연구)

  • 민경원
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1999.10a
    • /
    • pp.351-358
    • /
    • 1999
  • The base-isolation technology is to set up LRB between the base of a building and the ground to protect the building from seismic force. As Korea belongs to the region of moderate or weak seismicity it is more resonable to apply the base-isolation technology of LRB in the field of the response reduction of equipments under machine or transportation vibrations than in the field of seismic response reduction of buildings, In this paper small-scale LRB's designed for the response reduction of equipments are manufactured and tested for thier performance. The shaking table test is conducted to analyze the characteristics of LRB such as the variation of natural frequencies damping ratios and equipments responses.

  • PDF

Experimental Study on the Seismic Structural Responses Subjected to Different Earthquakes (지진특성에 따른 구조물의 지진응답실험)

  • 최인길;김형규;김민규;전영선
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.09a
    • /
    • pp.82-89
    • /
    • 2003
  • Near-field ground motions exhibit special characteristics that are different from ordinary far-field ground motions. In this study the shaking table tests were conducted to evaluate the effect of earthquake ground motions with different characteristics on the response of the structure. The ground motions used in this study were the scenario earthquake, design earthquake, and Chi-Chi earthquake measured in TCU052 station. These earthquakes have different frequency contents. The test results show that the frequency content of ground motion is very important to the response of structures. The floor responses of structure were greatly affected by the higher modal frequencies, as well as the fundamental frequency. The responses of third floor were significantly reduced due to the interaction between the structure and the base isolated mass installed at the third floor.

  • PDF

The Shaking Table Test of Isolated Model EDG System (면진된 모형디젤발전기의 지진응답실험)

  • Kim, Min-Kyu;Choun, Young-Sun
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2006.03a
    • /
    • pp.479-486
    • /
    • 2006
  • This paper presents tile results of experimental studies of the isolated Model EDG Systems. For the experimental work, the scaled model of EDG system and the isolation systems were developed. The target EDG model is 16PC2-5V400 which was manufactured by the SEMT Pielstick corporation. The Coil Spring and Viscous Damper Systems were selected for the isolation system. The Coil Spring and Viscous Damper systems can reduce not only seismic forces but also the operating vibration. For the input seismic motions, the scenario earthquake and the artificial earthquakes which were developed as NRC design spectrum and Uniform hazard Spectrum(UHS) were selected. As a result, at least 20% of seismic forces were decreased as the isolation system.

  • PDF

Resistance Reaction of the Seedlings on Powdery Mildew in Durum Wheat Trisomics Plants (듀럼밀 三染色體植物의 흰가루병에 대한 저항성 반응)

  • 오세관
    • Korean Journal of Plant Resources
    • /
    • v.11 no.3
    • /
    • pp.245-251
    • /
    • 1998
  • Test plants with 10 days old primary leaves were indouclated by shaking infected seedlings with sporulating colonies over them in an inoculation room under the conditions of 20$\pm$1 $^{\circ}C$ with constant illumination of 2.500 lux and 100% realtive humidity. A seeding reaction of 4 days after inoculation appreared in the trisomic types as opposed to Tri-5B line had been symtoms of a fungus 3 days after inoculation. The infection types of 8 days after inoculation were recognized with higher susceptibility to each trisomics in A genomie than B-genome. Tri-2A line showed less condium and there appeared symptoms of a conditions of mottle and formed papilla, and haustorium was not formed. However, Tri-5B line had much condium one overall leaves and showed a symtom like necrosis compared with normal plant. Moreover, Tri-5B line showed high sensitivity and high germination number of condium. These results inferred that resistant gene located on 2A chromosome and susceptibility gene is located on the chromosome 5B.

  • PDF

Cumulative deformation of high-speed railway bridge pier under repeated earthquakes

  • Gou, Hongye;Leng, Dan;Bao, Yi;Pu, Qianhui
    • Earthquakes and Structures
    • /
    • v.16 no.4
    • /
    • pp.391-399
    • /
    • 2019
  • Residual deformation of high-speed railway bridge piers is cumulative under repeated earthquakes, and influences the safety and ride comfort of high-speed trains. This paper investigates the effects of the peak ground acceleration, longitudinal reinforcement ratio, and axial compression ratio on the cumulative deformation through finite element analysis. A simply-supported beam bridge pier model is established using nonlinear beam-column elements in OpenSees, and validated against a shaking table test. Repeated earthquakes were input in the model. The results show that the cumulative deformation of the bridge piers under repeated earthquakes increases with the peak ground acceleration and the axial compression ratio, and decreases with the longitudinal reinforcement ratio.