• Title/Summary/Keyword: shaft grounding

Search Result 5, Processing Time 0.017 seconds

A Study on the Characteristics of Shaft Electric Motive Force of Controllable Pitch Propeller - Focusing on the M/V Segero - (가변피치 프로펠러의 축기전력 특성에 관한 연구 - 세계로호를 중심으로 -)

  • Park, Kyung-Min;Im, Myeong-Hwan;Choe, Sang-Bom;Ahn, Byong-Won
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.1
    • /
    • pp.135-140
    • /
    • 2022
  • Most machines are made of several types of . In particular, the shaft system of the ship consists of the brass of the propeller blade and the stainless steel of the shaft. When dissimilar the electrolyte solution of seawater, a voltaic cell and a shaft electromotive force is generated. This electromotive force causes electrical corrosion of the bearing and shaft supporting the shaft system. prevent this corrosion, a shaft grounding system is installed in ships. As for the experimental method, various information acquired by designing a program to periodically measure the electromotive force of the controllable pitchpropeller) system using an A/D converter of NI. This study analyzed the generation and characteristics of accumulator electromotive force for CPP and considered the installation location of the grounding system to remove the accumulator electromotive force.

A Study on Characteristic Analysis of Shaft Electromotive Force in SAEYUDAL (새유달호 축기전력의 특성 분석에 관한 연구)

  • Ahn, Byong-Won;Im, Myeong-Hwan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.1
    • /
    • pp.28-31
    • /
    • 2015
  • Electromotive forces (EMF) are generated by electrical equipment and engine shafting with a number of reasons. The shaft and bearing which is insulated by lubricating oil acts as a condenser, being able to store this EMFs. The electromotive force on the hull and shaft, with very few exceptions, has anode voltage on it. Electrical spark of the anode voltage on the shaft may lead to corrosion. Hence, in order to prevent ship's shaft and propeller corrosion, shaft grounding system are installed and operated. The shaft EMF voltage measurement methods was measured using 24bit 2 channels A/D converter of NI company and Labview software. 1 channel was propeller shaft's voltage and the other was M/E engine rpm gauge. In this paper, the generated electromotive force was analyzed and modeled with result of the analysis. As a result, the main shaft's electromotive force was in direct proportion to the main engine's revolution. However, over the specific R.P.M., it was reduced gradually. In addition, higher electromotive force on the shaft was identified during engine's ahead direction than the astern direction. The generated electromotive force is only minor compared to the shaft grounding system.

Design of an Active Shaft Grounding System for the Elimination of Alternating Electromagnetic Field in Vessel (선체 교류 전자장 제거를 위한 능동 축 접지 시스템 설계)

  • Kim, Tae-kue;Ahn, Ho-kyun;Yoon, Tae-sung;Park, Seung-kyu;Kwak, Gun-pyong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.6
    • /
    • pp.1515-1524
    • /
    • 2015
  • Recently, for the purpose of preventing the corrosion of a vessel, the electrical corrosion protection device that prevents the corrosions of the hull and the propeller is widely used. However, the electrical corrosion protection method artificially emits the current into the seawater around the hull using the power supply in order to make the hull and propeller be in the state of not being corrosion, so that electromagnetic field is generated outside the hull by the current emitted into the seawater. In this paper, the static and alternating constituents of the electromagnetic field generated in underwater outside the hull are analyzed and a countermeasure is investigated to reduce the strength of the electromagnetic field. In conventional shaft grounding system, the shaft potential is maintained above at least 100mV and the alternating current component constitutes more than 10% of the total current. However, in this paper, a control system was designed in order that the alternating current component and the shaft potential which generate electromagnetic field are maintained within 1% and 2mV respectively, and the performance was verified by simulation.

Approaches to Suppressing Shaft Voltage in Non-Insulated Rotor Brushless DC Motor driven by PWM Inverter

  • Isomura, Yoshinori;Yamamoto, Kichiro;Morimoto, Shigeo;Maetani, Tatsuo;Watanabe, Akihiko;Nakano, Keisaku
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.3 no.3
    • /
    • pp.241-247
    • /
    • 2014
  • The voltage source PWM inverter generally used to drive the air conditioning (A/C) fans has been posing a large issue that the bearings in air conditioning fan motors are highly possible to be corroded electrically. Potential difference called shaft voltage is generated between inner and outer rings of the bearings due to inverter switching. The shaft voltage causes bearing lubricant breakdown dielectrically. As a result, bearing current is caused. This current causes the bearing corrosion. In previous work, we demonstrated that the shaft voltage can be reduced by using an insulator inserted between the outer and inner cores of the rotor in an air conditioning fan motor without grounding. This paper proposes the other countermeasure for reducing the shaft voltage in fan motors. The countermeasure which adds a capacitor between the brackets and the stator core is effective even for fan motors with non-insulated rotor. The effectiveness is confirmed by both simulated and experimental results.

Characteristics and Measurement Method of the Underwater Electromagnetic Signature Emitted from a Naval Ship (함정 발생 수중 전자기장 신호의 특성 및 측정 기법)

  • Yang, Chang-Seob;Chung, Hyun-Ju;Shin, Seung-Je
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.9 no.2 s.25
    • /
    • pp.11-19
    • /
    • 2006
  • The underwater electromagnetic signatures of a naval ship are mainly generated from three sources which are the permanent and induced magnetic field in the ship's hull and other ferrous components, the cathodic current electromagnetic field established by the Impressed Current Cathodic Protection(ICCP) system or the Sacrificial Anode and the stray electromagnetic fields generated by onboard equipment. These signatures can be minimized by certain design methods or installation of signature reduction equipment. In this paper, we represented the characteristic of the underwater electromagnetic signature and the signature reduction techniques for a naval ship. Also, we measured the electromagnetic field changes emitted from the real ship using the Electric and Magnetic field Measurement System(EMMS). We found that the underwater electromagnetic signature for a naval ship can be used as input or trigger signal in a surveillance system and an influence mine.