• 제목/요약/키워드: shadow elimination

검색결과 11건 처리시간 0.023초

신경망을 이용한 차량 객체의 그림자 제거 (Cast-Shadow Elimination of Vehicle Objects Using Backpropagation Neural Network)

  • 정성환;이준환
    • 한국ITS학회 논문지
    • /
    • 제7권1호
    • /
    • pp.32-41
    • /
    • 2008
  • 비디오를 이용한 비전기반 감시에서 움직이는 객체의 추적은 GMM (Gaussian Mixture Model)을 사용한 배경영상과 현재영상의 차이법을 이용한다. 문턱치를 통해 생성된 이진영상을 이용하여 객체 추적을 할 경우 객체 정보가 아닌 그림자에 의하여 객체가 병합되는 현상이 나타난다. 본 논문에서는 신경망(Backpropagation Neural Network)을 이용하여 그림자를 제거하는 방법을 제안하였다. 10개의 동영상에서 객체영역과 캐스트그림자(Cast-Shadow)영역의 훈련용 이미지에서 특징 값을 추출하여 신경망을 훈련시켰다. 캐스트그림자를 제거하는 방법은 이진영상의 객체로 추정되는 영역에서 그림자를 분리하는 방법을 기초로 하며 기존의 그림자 제거 알고리즘 (SNP, SP, DNM1, DNM2, CNCC)보다 그림자 제거 성능이 (16.2%, 38.2%, 28.1%, 22.3%, 44.4%)로 높게 나타났다.

  • PDF

그림자 제거를 위한 색상 공간의 비교 (Comparisons of Color Spaces for Shadow Elimination)

  • 이광국;;윤자영;김재준;김회율
    • 한국멀티미디어학회논문지
    • /
    • 제11권5호
    • /
    • pp.610-622
    • /
    • 2008
  • 이동 객체의 검출은 다양한 영상 감시 응용에 필수적인 중요한 기술이다. 그런데 이동 객체 검출 결과로 얻어진 전경 영상에는 그림자에 의한 색상 변화가 전경 영역으로써 함께 검출되는 경우가 쉽게 발생하며, 이러한 문제를 해결하기 위하여 이동 객체 검출은 흔히 그림자 제거와 함께 수행된다. 대부분의 그림자 제거 방법은 조명 변화발생시 색상의 조도 성분만 변화하며 색도 성분은 유지된다는 가정에 기반하여 색도 성분을 분리하여 표현하는 다양한 색상 공간을 통해 그림자 제거를 수행한다. 본 논문에서는 색도 성분을 분리하는 색상 공간 가운데 그림자 제거에 가장 적합한 색상 공간을 선택하고자 다양한 색상 공간 (YCbCr, HSI, 정규화된 rgb, Yxy, Lab, c1c2c3)을 비교하였다. 과거 그림자 제거에 있어서 다양한 색상 공간의 성능을 비교한 몇몇 연구가 있었으나, 기존 연구들은 각 논문에서 제안한 특정 그림자 제거 방법에 다양한 색상 공간을 적용하거나 임의의 임계값을 이용하여 각 색상 공간의 성능을 비교하였기 때문에, 각 색상 공간에서 조명 변화 발생에 따른 색상 왜곡을 정확히 측정하기 어려운 문제가 있었다. 본 논문에서는 이러한 기존 연구의 문제점을 피하고 각 색상 공간을 정확하게 비교하기 위하여 1) 서로 다른 조명 조건에 노출된 동일한 색상을 갖는 면의 경계에서 색도 성분의 기울기 값을 측정함으로서 조명 변화 발생 시 색도 성분의 변화 정도를 비교하였으며, 2) RoC 곡선을 통하여 임계치 설정의 문제를 피하면서 배경 제거 정확도를 비교하였다. 실험을 통하여 YCbCr 색상 공간과 정규화된 rgb 색상 공간이 비교대상으로 선택된 여러 색상 공간 가운데 가장 좋은 성능을 보이는 것을 확인하였다.

  • PDF

차량 감시영상에서 그림자 제거를 통한 효율적인 차종의 학습 및 분류 (Efficient Learning and Classification for Vehicle Type using Moving Cast Shadow Elimination in Vehicle Surveillance Video)

  • 신욱선;이창훈
    • 정보처리학회논문지B
    • /
    • 제15B권1호
    • /
    • pp.1-8
    • /
    • 2008
  • 일반적으로 감시영상에서 움직이는 물체들은 배경빼기 혹은 프레임 차를 이용하여 추출된다. 하지만 객체에 의해서 만들어지는 그림자는 심각한 탐지의 오류를 야기시킬 수 있다. 특히, 도로 상에 설치된 감시카메라로부터 획득된 영상으로부터 차량 정보를 분석할 때, 차량에 의해서 생성되는 그림자로 인하여 차량의 모양을 왜곡시켜 부정확한 결과를 만든다. 때문에 그림자의 제거는 감시 영상 내에서의 정확한 객체 추출을 위해서 반드시 필요하다. 본 논문은 도로감시영상 내에서 움직이는 차량의 차종판별 성능을 향상시키기 위한 움직이는 객체 내에 만들어지는 그림자를 제거한다. 제거된 객체의 영역은 소실점을 이용하여 3차원 객체로 피팅(Fitting)한 후 측정된 데이터를 감독 학습하여 원하는 차종 판별결과를 얻는데 사용한다. 실험은 3가지 기계학습 방법{IBL, C4.5, NN(Neural Network)}을 이용하여 그림자의 제거가 차종의 판별성능에 미치는 결과의 평가한다.

적응적 매개변수 갱신을 통한 효과적인 그림자 제거 기법 (An Effective Shadow Elimination Method Using Adaptive Parameters Update)

  • 김병수;이광국;윤자영;김재준;김회율
    • 대한전자공학회논문지SP
    • /
    • 제45권3호
    • /
    • pp.11-19
    • /
    • 2008
  • 영상 내에서 이동하는 객체를 추출하는 전경 분리 방법은 객체의 일치 추적 및 인식에 있어서 필수적인 기술이다. 하지만 이동하는 객체 주변에 그림자가 발생하는 경우 이러한 전경 분리 방법에서는 그림자도 전경 영역으로 잘못 판단하여 분리하게 되어 이동 객체의 정확한 형태를 파악하거나 위치를 추정하기 어려운 문제가 있다. 본 논문에서는 이러한 문제를 해결하기 위하여 색상 정보를 이용하여 그림자를 모델링하고 이를 통해 전경 영역 내의 그림자 화소를 Bayesian 분류법에 따라 제거하는 방법을 제안하였다. 특히 제안하는 방법은 매개변수 갱신 과정을 통해 그림자의 특성이 동적으로 모델링되기 때문에 주변 조명의 지속적인 변화에 적응적으로 대응할 수 있다. 실험 결과 제안하는 방법은 다양한 환경에서 그림자를 효과적으로 제거하는 것을 확인하였다.

Traffic flow measurement system using image processing

  • Hara, Takaaki;Akizuki, Kageo;Kawamura, Mamoru
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 Proceedings of the Korea Automatic Control Conference, 11th (KACC); Pohang, Korea; 24-26 Oct. 1996
    • /
    • pp.426-439
    • /
    • 1996
  • In this paper, we propose a simple algorithm to calculate the numbers of the passing cars by using an image processing sensor for the digital black and white images with 256 tone level. Shadow is one of the most troublesome factor in image processing. By differencing the tone level, we cannot discriminate between the body of the car and its shadow. In our proposed algorithm, the area of the shadow is excluded by recognizing the position of each traffic lane. For real-time operation and simple calculation, two lines of the tone level are extracted and the existences of cars are recognized. In the experimental application on a high-way, the recognition rate of the real-time operation is more than 94%.

  • PDF

환경변화에 적응하는 효율적인 그림자 제거 기법 (An Efficient Shadow Removal Technique adapted to Environmental Changes)

  • 류남훈;반경진;오경숙;김응곤
    • 한국전자통신학회논문지
    • /
    • 제4권3호
    • /
    • pp.204-210
    • /
    • 2009
  • 영상 감시 분야 중 침입자를 자동으로 인식해 내는 기술의 전처리 과정인 배경 분리 방법과 이동하는 객체의 주변에 있는 그림자를 제거하는 방법에 대한 많은 연구가 있어 왔다. 이동하는 객체와 그림자의 분리가 정확하지 않을 경우 이동 객체의 정확한 형태 분석이 어려우며, 위치 추적 또한 어렵다. 본 논문에서는 그림자를 제거하는 방법으로 명도 값을 활용하는 방법을 제안한다. 그림자 영역이 배경 영역과 비교하여 색상의 변화는 발생하지 않고, 명도 차이만 발생한다는 점에 착안한 방법으로, 이전 프레임에서 그림자 제거에 사용했던 임계값을 다음 프레임에서 갱신하여 사용하는 방법이다.

  • PDF

카메라기반의 왜곡이 보정된 흑백 문서 영상 생성 (Distortion Corrected Black and White Document Image Generation Based on Camera)

  • 김진호
    • 한국콘텐츠학회논문지
    • /
    • 제15권11호
    • /
    • pp.18-26
    • /
    • 2015
  • 스캐너 대신 카메라를 이용하여 문서의 사본 영상을 촬영하면 촬영 각도에 따라 기하학적 왜곡이 발생하거나 그림자가 생길 수 있다. 본 논문에서는 카메라로 촬영한 문서 영상으로부터 왜곡을 보정하고 그림자 영향을 제거한 흑백 문서 영상 생성 알고리즘을 제안하였다. 카메라 렌즈의 방사 왜곡으로 인해 휘어진 테두리를 펴거나 촬영 각도에 따라 유입된 문서 외부 영역을 제거하기 위한 기하학적 보정을 위해 2차 미분 필터 기반의 문서 테두리 검출 방안을 마련하였다. 그리고 적응적 이진화 방법으로 그림자를 제거한 흑백 문서 영상을 생성하였다. 제안한 왜곡 보정 흑백 문서 영상 생성 알고리즘을 스마트 폰 카메라로 촬영한 문서 영상들을 대상으로 실험한 결과 우수한 처리 결과를 얻을 수 있었다.

열 영상에서의 차량 그림자 제거 기법 (Vehicle Shadow Detection in Thermal Videos)

  • 김지만;최은지;임정은;노승인;김대진
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2012년도 한국컴퓨터종합학술대회논문집 Vol.39 No.1(B)
    • /
    • pp.369-371
    • /
    • 2012
  • Shadow detection and elimination is a critical issue in vision-based system to improve the detection performance of moving objects. However, traditional algorithms are useless at night time because they used the chromaticity and brightness information from the color image sequence. To obtain the high detection performance, we can use the thermal camera and there are shadows by the heat not the light. We proposed a novel algorithm to detect and eliminate the shadows using the thermal intensity and the locality property. By combining two results of the intensity-based and locality-based, we can detect the shadows by the heat and improve the detection performance of moving object.

A Video Traffic Flow Detection System Based on Machine Vision

  • Wang, Xin-Xin;Zhao, Xiao-Ming;Shen, Yu
    • Journal of Information Processing Systems
    • /
    • 제15권5호
    • /
    • pp.1218-1230
    • /
    • 2019
  • This study proposes a novel video traffic flow detection method based on machine vision technology. The three-frame difference method, which is one kind of a motion evaluation method, is used to establish initial background image, and then a statistical scoring strategy is chosen to update background image in real time. Finally, the background difference method is used for detecting the moving objects. Meanwhile, a simple but effective shadow elimination method is introduced to improve the accuracy of the detection for moving objects. Furthermore, the study also proposes a vehicle matching and tracking strategy by combining characteristics, such as vehicle's location information, color information and fractal dimension information. Experimental results show that this detection method could quickly and effectively detect various traffic flow parameters, laying a solid foundation for enhancing the degree of automation for traffic management.