• Title/Summary/Keyword: shading model

Search Result 115, Processing Time 0.022 seconds

A shape from shading algorithm using a membrane model an direct recovery (박막 모델과 직접복구를 이용한 영상으로부터 형상 복구 알고리듬)

  • 박상호;이남욱
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.33B no.6
    • /
    • pp.73-81
    • /
    • 1996
  • In this paper, based on the constrained optimizatin technique and direct recovery method, we proesent a shape form shading (SFS) algorithm to recover a 3-D shape form an image. More specifically, we first employ the membrane model for a smoothness constraint to revoer a 3-D shape coarsely. We then compute the surface height directly to reduce the shape distortion due to a regularization term. In our approach, we can obtain a stable and accurate solution by the application of these two steps. Several simulation results on various images are provided and discussed in this paper and they show that the proposed algorithm extracts the 3-D information accurately and efficiently.

  • PDF

An Evaluation of Daylight Distribution with Korean Traditional Paper and Roller Shading Systems in the Mock-up model (Mock-up 실험을 통한 전통한지와 차양장치의 주광유입 특성 평가)

  • Lee, Soon-Ji;Kim, Yu-Sin;Choi, An-Seop
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2008.05a
    • /
    • pp.85-88
    • /
    • 2008
  • The purpose of this study is to analyze daylight distribution and light characteristics on the Ma-ji and Roller Shade fabric, and to investigate a possibility of using it as a shading system. Using a 1/2 Mock-up model, daylight distribution is analyzed with the Ma-ji and Sun-ji (Korean traditional paper) which have good efficiency and less glare. Ma-ji has the best daylight distribution, so that daylight experiment is conducted with the Ma-ji and Roller Shade fabric. In current office buildings and apartment houses, daylight characteristics of Korean traditional paper windows could be used as preliminary data to develop a window system which makes better daylight performance.

  • PDF

A Study on Effects of Partial Shading on PV System applied to the Offshore Plant

  • Lee, Ji Young;Yang, Hyang Kweon;Oh, Jin Seok
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.2
    • /
    • pp.152-158
    • /
    • 2015
  • Unlike photovoltaic systems installed on land, photovoltaic systems applied to the offshore plant have the characteristic that is installed in a limited space. For single point mooring plant, it is advantageous in terms of a reliable power supply to be installed in different directions of photovoltaic panels, because it is not possible to identify the position of the sun by rotation of the plant itself. Differences of installation angle between photovoltaic panels make a difference of the intensity of radiation irradiated on each photovoltaic panel, and it brings loss of generation quantity due to the partial shading. In order to provide a photovoltaic system suitable for offshore plant, the modeling which contains multiple photovoltaic panels controlled by single controller is performed. Then, it was examined how the output characteristics of the photovoltaic system change about the difference of the intensity of radiation that varies depending on the altitude of the sun. Finally, through the simulation, a development model of the photovoltaic system which is suitable for offshore plant is suggested.

Three Dimensional Shape Estimation by Shading Analysis of Endoscopic Image (음영분석에 의한 내시경 영상의 3차원 형체 추정에 관한 연구)

  • Lee, Tae-Su;Cha, Eun-Jong;Yun, Se-Jin
    • Journal of Biomedical Engineering Research
    • /
    • v.16 no.4
    • /
    • pp.499-506
    • /
    • 1995
  • A new numerical method estimated three dimensional shape of the internal surface of the stomach by analyzing the shading data of endoscopic image. First analyzed was the inherent instrumentational characteristics of the endoscope system, followed by the analysis of the stomach surface properties, both of which affected the imaging properties. We employed these prior informations to implement the iterative algorithm of shading analysis based on Hom's variational approach. The present algorithm was validated by performing simulation on a $256{\times}320$ image data chosen from original $512{\times}512$ image of the stomach surface model. The best 3-dimensional estimation of the surface was achieved with the Lagrangian multiplier, of 0.3, when the algorithm best converged showing minimal estimation error.

  • PDF

Compression of Normal Vectors using Octree Encoding (옥트리 인코딩을 이용한 법선 벡터의 압축)

  • Kim, Y.J.;Kim, J.J.
    • Korean Journal of Computational Design and Engineering
    • /
    • v.12 no.2
    • /
    • pp.109-117
    • /
    • 2007
  • Three-dimensional mesh models have been widely used in various applications such as simulations, animations, and e-catalogs. In such applications the normal vectors of mesh models are used mainly for shading and take up the major portion of data size and transmission time paper over networks. Therefore a variety of techniques have been developed to compress them efficiently. In this paper, we propose the MOEC (Modified Octree Encoding Compression) algorithm, which allow multi lever compression ratios for 3D mesh models. In the algorithm, a modified octree has nodes representing their own positions and supporting a depth of the tree so that the normal vectors are compressed up to levels where the shading is visually indistinguishable. This approach provides efficient in compressing normals with multi-level ratios, without additional encoding when changing in compression ratio is required.

Low-Complexity Lens-shading Correction Algorithm based on Piece-wise Linear Model (낮은 복잡도를 가지는 구간선형 모델 기반 렌즈음영왜곡 보상 알고리즘)

  • Lee, Bora;Park, Hyun Sang
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.49-52
    • /
    • 2011
  • 본 논문에서는 구간선형 모델을 적용하여 낮은 복잡도를 가지는 LSC(Lens-Shading Correction) 알고리즘을 제안한다. 제안한 알고리즘은 각 화소와 렌즈 중심점으로부터 거리를 정수형으로 계산하고, 이 정수를 거리에 대한 LSC 이득값이 저장된 LUT(Look-Up Table)에 대한 주소로 적용하여, 입력 화소 값에 곱함으로써 LSC를 수행한다. 거리를 구하려면 제곱근 회로가 추가되어야 한다. LUT에 저장된 이득값은 원점으로부터의 거리에 대한 평균 이득값을 저장하고 있기 때문에, 제곱근 계산에 높은 정밀도를 할애하여도 LSC 보상된 영상의 화질에 미치는 영향은 높지 않으므로 정수형 제곱근 연산을 수행한다. 제곱근 계산은 구간 선형화하여 단지 덧셈과 쉬프트 연산만으로 제곱근 연산을 완료할 수 있도록 간략화 하였다. 제안한 알고리즘을 양산 중인 일반 카메라 모듈에 적용한 결과, 카메라모듈 제조업체의 LSC 평가 기준을 상회하는 수준으로 나타나며, 구현될 하드웨어 복잡도가 매우 낮아서 모바일 카메라 구현에 매우 적합하다.

  • PDF

Photometric Stereo Method (측광 입체시법)

  • 김태은;최종수
    • ICROS
    • /
    • v.2 no.6
    • /
    • pp.21-29
    • /
    • 1996
  • 본 논문의 구성은 2장에서는 밝기 분포로부터의 형상복구(Shape from shading)의 한 방법인 고전적인 Photometric stereo mehtod에 대해서 개략적으로 고찰해 보고 3장, 4장에서는 혼성반사모델(Hybrid reflectance model)을 기반으로 하는 2종류의 확장된 Photometric stereo 방법에 대해 설명하고, 각 경우에 대한 시뮬레이션 결과를 2.5차원 및 3차원 형상으로 보이고 고찰한다. 5장에서는 결론 및 고찰에 대해서 언급하고 논문을 마친다.

  • PDF

An Effective Algorithm for Transmitted Solar Radiation Calculation through Window Glazing on a Clear Day

  • Oh, John Kie-Whan
    • KIEAE Journal
    • /
    • v.14 no.4
    • /
    • pp.35-45
    • /
    • 2014
  • The main objective of this study is to provide an effective algorithm of the transmitted solar radiation calculation through window glazing on a clear day. This algorithm would be used in developing a computer program for fenestration system analysis and shading device design. Various simulation methods have been evaluated to figure out the most accurate and effective procedure in estimation of transmitted solar radiation on a tilted surface on a clear day. Characteristics of simulated results of each step have been scrutinized by comparing them with measured results of the site as well as results from other simulation programs. Generally, the Duffie & Beckman's solar calculation method introducing the HDKR anisotropic model provided the most reliable simulation results. The DOE-2 program usually provided over-estimated simulation results. The estimation of extraterrestrial solar radiation and beam normal radiation were conducted pretty accurately. However, the solar radiation either on horizontal surface or on tilted surface involves complicated factors in estimation. Even though the estimation results were close to the real measured data during summer when solar intensity is getting higher, the estimation provided more error when solar intensities were getting weaker. The convex polygon clipping algorithm with homogeneous coordinates was fastest model in calculation of sunlight to shaded area ratio. It could not be applied because of its shape limitation.

Combining Model-based and Heuristic Techniques for Fast Tracking the Global Maximum Power Point of a Photovoltaic String

  • Shi, Ji-Ying;Xue, Fei;Ling, Le-Tao;Li, Xiao-Fei;Qin, Zi-Jian;Li, Ya-Jing;Yang, Ting
    • Journal of Power Electronics
    • /
    • v.17 no.2
    • /
    • pp.476-489
    • /
    • 2017
  • Under partial shading conditions (PSCs), multiple maximums may be exhibited on the P-U curve of string inverter photovoltaic (PV) systems. Under such conditions, heuristic methods are invalid for extracting a global maximum power point (GMPP); intelligent algorithms are time-consuming; and model-based methods are complex and costly. To overcome these shortcomings, a novel hybrid MPPT (MPF-IP&O) based on a model-based peak forecasting (MPF) method and an improved perturbation and observation (IP&O) method is proposed. The MPF considers the influence of temperature and does not require solar radiation measurements. In addition, it can forecast all of the peak values of the PV string without complex computation under PSCs, and it can determine the candidate GMPP after a comparison. Hence, the MPF narrows the searching range tremendously and accelerates the convergence to the GMPP. Additionally, the IP&O with a successive approximation strategy searches for the real GMPP in the neighborhood of the candidate one, which can significantly enhance the tracking efficiency. Finally, simulation and experiment results show that the proposed method has a higher tracking speed and accuracy than the perturbation and observation (P&O) and particle swarm optimization (PSO) methods under PSCs.

Daylight Assessment of Venetian Blind by Shading Heights and Slat Angles (베네시안 블라인드의 높이와 슬랫각도 조절에 따른 계절별 실내주광분포 분석)

  • Shin, Hwa-Young;Kim, Gon;Kim, Jeong Tai
    • KIEAE Journal
    • /
    • v.11 no.2
    • /
    • pp.105-111
    • /
    • 2011
  • Aims of this study is to investigate the daylighting control strategy of venetian blind system was performed as a function of ratio of shading height to window and slat angles in the preliminary stage of the parametric study. Floor-to-ceiling window walls of living spaces are used widely in apartment buildings since the Korean government has legally allowed elimination of the balcony area. Enlarging living area by balcony elimination, the larger glass area of window is exposed to the direct sunlight. As a common sunlight controlling device, blind system can be used in all orientations and all latitudes and it may obstruct, absorb, reflect and transmit solar radiation to building by proper adjusting. However, blind system can produce discomfort in occupant and less energy efficiency, if it has not been controlled optimally. The simulation model was based on the unit module of typical living space with balcony elimination. The room dimension was $6.0m(w){\times}6.9m(d){\times}2.7m(h)$ with floor to ceiling height of 2.5m. The blind system was simulated at five slat angles (horizontal, $30^{\circ}$, $45^{\circ}$ upward and downward tilted) and the four ratio of shading height to window (fully closed, partly opened, no-blind) using the Desktop RADIANCE 2.0 program. The series of simulation results indicates that the advantages of available daylight and outside of view can be improved by proper adjusting blind system.