• Title/Summary/Keyword: sewer pipe

Search Result 149, Processing Time 0.02 seconds

Analysis of the influence of combined use of ferronickel slag fine powder and admixture on VR sewage pipe strength development (페로니켈슬래그 미분말 및 혼화재의 복합사용이 VR 하수관 강도발현에 미치는 영향분석)

  • Nam, Sang-Koo;Chung, Tae-Jun;Jo, Seol-Ah;Yoo, Jeong-Hwan;Park, Sang-Soon
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.3
    • /
    • pp.214-221
    • /
    • 2018
  • In this paper, the effects of ferronickel slag powder and admixture on the strength of VR sewer pipe were analyzed. the substitution rate was tested as a variable, and the strength development was studied through the flexural strength, compressive strength and using SEM microscopic analysis. bending strength, compressive strength results and micro analysis using SEM showed the correlation in each case. the substitution rates were 20% and 30% relative to the mass of the OPC respectively, and were substituted according to a constant ratio of ferronickel slag fine powder and mixture. when the substitution ratio was 20%, the strength development was excellent. also, bending strength and compressive strength were the best when the ferronickel slag fine powder, quicklime, gypsum and calcium chloride were used as the admixture, dense microstructural patterns appeared. the possibility of progressive strength development is shown after 28 days.

Durability Properties of Ultra Rapid Hardening Mortar Produced with Alumina-based Binder for Repairing Sewage Treatment Pipes (하수관거 보수용 알루미나계 결합재 초속경 모르타르의 내구 특성)

  • Eun-Ho, Kim;Byung-Jae, Lee;Sun-Mok, Lee;Yun-Yong, Kim
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.10 no.4
    • /
    • pp.482-488
    • /
    • 2022
  • In this study, the durability of ultra rapid hardening mortar for sewage pipe was evaluated by type of mortar binder. As a result of analyzing the internal structure for each type of mortar, it was confirmed that Al2(OH)3 was generated in the internal structure of the CAC-based mortar, and its corrosion resistance was superior to that of other types of mortar. As a result of the compressive strength test, OPC had the tsmallest strength, followed by CAC100 > CAC100P > CAC80. This trend was similar to the previous study results. Chloride ion penetration resistance and freeze-thaw test showed similar trends. That is, CAC and C12A7 were better than OPC, and CSA was worse than OPC. This is mostly beacuse of cracks caused by expansion of CSA-based mortar. CAC100P mix showed the best chemical resistance. It is thought that this is because the alumina gel formed inside the mortar and the polymer combine to make the internal structure more dense.

A Study on the Manufacturing, Mechanical Properties,Abrasion Resistance, and Slow Crack Growth Resistance of the Recycled Polyethylene/Fly Ash Composites (재생 폴리에틸렌/비산회 분말 충전 복합체 제조와 기계적 물성, 내마모성 및 저속균열성장 저항성에 관한 연구)

  • Kye, Hyoung-San;Shin, Kyung-Chul
    • Elastomers and Composites
    • /
    • v.46 no.4
    • /
    • pp.335-342
    • /
    • 2011
  • The virgin and recycled polyethylene composites with various ratio of fly ash were manufactured by using a fully intermeshing co-rotating twin screw extruder for the reuse of fly ash from power plant and post-consumed polyethylene. Fly ash were blended with virgin HDPE and recycled polyethylene at the weight fraction of 0 to 40 wt.%. Mechanical properties such as yield strength, abrasion resistance, and slow crack resistance were measured with ISO and ASTM standards. The experimental results for the various composites showed that the elongation at break and the yield stress of the composites decreased with increasing fly ash contents. Generally, the abrasion resistance of PEs decreased with increasing sandpaper grits but the abrasion resistance of the composites increased with fly ash content at finer abrasive surface. The slow crack growth resistance of virgin HDPE, recycled JRPE and the JRPE composite showed higher slow crack growth resistance up to 50% of load at notch depth of 20% and 30%, but KRPE and the KRPE composite showed much lower resistance than virgin HDPE, JRPE and the JRPE composite. Time to break, measured with NCLS test method, of all PEs and the composites satisfies the regulation of Korean Industrial Specification for sewer pipe and support application.

Development of head loss coefficient formula at surcharged four-way combining square manhole with variation of inlet flow (유입유량 변화를 고려한 과부하 4방향 사각형 합류맨홀에서의 손실계수 산정식 개발)

  • Jo, Jun Beom;Kim, Jung Soo;Yoon, Sei Eui
    • Journal of Korea Water Resources Association
    • /
    • v.50 no.12
    • /
    • pp.877-887
    • /
    • 2017
  • The energy losses due to surcharged flow at four-way combining manhole, which is mainly installed in the downstream of urban sewer system, is the main cause of inundation in urban area. Surcharged four-way combining manholes form various flow configuration such as straight through, T-type, and four-way manholes depending on variation of inflow discharge in inlet pipes. Therefore, it is necessary to analyze change of energy loss and estimate head loss coefficients at surcharged four-way combining manhole with variation of inflow discharge ratio. The hydraulic experimental apparatus which can change inflow ratios were installed to analyze the flow characteristics at four-way combining manhole. In this study, to calculate the head loss coefficient according to change of the inflow discharge ratios at the surcharged four-way combining square manhole, the discharge conditions of 40 cases which the inflow ratios of each inlet pipe were changed by 10% interval was selected. The head loss coefficient at surcharged square manhole showed the lowest value of 0.40 at the straight manhole and the highest value of 1.58 at the $90^{\circ}$ junction manhole. In the combining manholes (T-type and four-way), the head loss coefficients were calculated more higher as the lateral flow rate was biased. The contour map of head loss coefficient range was constructed by using the estimated head loss coefficients and the empirical formula of head loss coefficients was derived to consider the variation of inflow discharge ratios at the surcharged square manhole. The empirical formula could be applied to the design and assessment of the urban drainage system.

Strength Characteristics on Sulfuric Acid Corrosion of Recycled PET Polymer Concrete with Different Fillers (충전재 종류에 따른 PET재활용 폴리머콘크리트의 황산부식에 대한 강도 특성)

  • Jo Byung-Wan;Shin Kyung-Chul;Park Seung-Kook
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.4 s.88
    • /
    • pp.499-504
    • /
    • 2005
  • Polymer concrete shows excellent mechanical properties and chemical resistance compared with conventional normal cement concrete. The polymer concrete Is drawing a strong interest as high-performance materials in the construction industry Resins using recycled PET offer the possibility of a lower source cost of materials for making useful polymer concrete products. Also the recycling of PET in polymer concrete would help solve some of the solid waste problems Posed by plastics and save energy. An objective of this paper is to estimate the damage of sulfuric acid, through investigating recycled PET polymer concrete, immersed at sulfuric acid solution for 84 days. As a result of testing, recycled PET PC, used $CaCO_3$ as filler, makes a problem of appearance and strength if they are exposed for long term at corrosion environment. On the other hand, recycled PET PC, used fly-ash as filler, had less effect on decrease in weight and strength. Recycled PET PC is excellent chemical resistance, resulting in the role of unsaturated polyester resin which consists of polymer chain structure accomplishes bond of aggregates and filler strongly. Also, recycled PET PC, used fly-ash as filler, is stronger resistance of sulfuric acid corrosion than $CaCO_3$, because it is composed of $SiO_2$ and very strong glassy crystal structure. Therefore, recycled PET PC, used fly-ash as filler, is available under corrosion circumstances like sewer pipe or waste disposal plant.

Estimation of Head Loss Coefficients at Surcharged Square Manhole Using Numerical Model (수치모형을 이용한 과부하 사각형 맨홀에서의 손실계수 산정)

  • Kim, Jung-Soo;Lim, Ga-Hui;Rim, Chang-Soo;Yoon, Sei-Eui
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.11 no.3
    • /
    • pp.143-150
    • /
    • 2011
  • Energy loss at manholes, often exceeding friction loss of pipes under surcharged flow, is considered as one of the major causes of inundation in urban area. Therefore, it is important to analyze the head losses at manholes, especially in case of surcharged flow. The stream characteristics were analyzed and head loss coefficients were estimated by using the computational fluid dynamics(CFD) model, FLUENT 6.3, at surcharged square manhole in this study. The CFD model was carefully assessed by comparing simulated results with the experimental ones. The study results indicate that there was good agreement between simulation model and experiment. The CFD model was proved to be capable of estimating the head loss coefficients at surcharged manholes. The head loss coefficients with variation of the ratio of manhole width(B) to inflow pipe diameter(d) and variation of the drop height at surcharged square manhole with a straight-path through were calculated using FLUENT 6.3. As the ratio of B/d increases, head loss coefficient increases. The depth and head loss coefficient at manhole were gradually increased when the drop height was more than 5cm. Therefore, the CFD model(Fluent 6.3) might be used as a tool to simulate the water depth, energy losses, and velocity distribution at surcharged square manhole.

Retrospective analysis of the urban inundation and the impact assessment of the flood barrier using H12 model (H12 모형을 이용한 도시침수원인 및 침수방어벽의 효과 분석)

  • Kim, Bomi;Noh, Seong Jin;Lee, Seungsoo
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.5
    • /
    • pp.345-356
    • /
    • 2022
  • A severe flooding occured at a small urban catchment in Daejeon-si South Korea on July 30, 2020 causing significant loss of property (inundated 78 vehicles and two apartments) and life (one casualty and 56 victims). In this study, a retrospective analysis of the inundation event was implemented using a physically-based urban flood model, H12 with high-resolution data. H12 is an integrated 1-dimensional sewer network and 2-dimensional surface flow model supported by hybrid parallel techniques to efficiently deal with high-resolution data. In addition, we evaluated the impact of the flooding barriers which were installed after the flood disaster. As a result, it was found that the inundation was affected by a combination of multiple components including the shape of the basin, the low terrain of the inundation area located in the downstream part of the basin, and lack of pipe capacity to drain discharge from the upstream during heavy rain. The impact of the flooding barriers was analyzed by modeling with and without barriers on the high-resolution terrain input data. It was evaluated that the flood barriers effectively lower the water depth in the apartment complex. This study demonstrates capability of high-resolution physically-based urban modeling to quantitatively assess the past inundation event and the impact of the reduction measures.

Ground Subsidence Risk Grade Prediction Model Based on Machine Learning According to the Underground Facility Properties and Density (기계학습 기반 지하매설물 속성 및 밀집도를 활용한 지반함몰 위험도 예측 모델)

  • Sungyeol Lee;Jaemo Kang;Jinyoung Kim
    • Journal of the Korean GEO-environmental Society
    • /
    • v.24 no.4
    • /
    • pp.23-29
    • /
    • 2023
  • Ground subsidence shows a mechanism in which the upper ground collapses due to the formation of a cavity due to the movement of soil particles in the ground due to the formation of a waterway because of damage to the water supply/sewer pipes. As a result, cavity is created in the ground and the upper ground is collapsing. Therefore, ground subsidence frequently occurs mainly in downtown areas where a large amount of underground facilities are buried. Accordingly, research to predict the risk of ground subsidence is continuously being conducted. This study tried to present a ground subsidence risk prediction model for two districts of ○○ city. After constructing a data set and performing preprocessing, using the property data of underground facilities in the target area (year of service, pipe diameter), density of underground facilities, and ground subsidence history data. By applying the dataset to the machine learning model, it is evaluated the reliability of the selected model and the importance of the influencing factors used in predicting the ground subsidence risk derived from the model is presented.

The Characteristics of Natural Hazard due to the Impact of Urbanization in Seoul Metropolitan Area : A potential flood hazard study of Anyang-Cheon Watershed (수도권지역 개발에 따른 자연재해 특징분석 : 안양천 유역분지에서 잠재적 수해특성 분석)

  • 성효현
    • Spatial Information Research
    • /
    • v.4 no.1
    • /
    • pp.21-42
    • /
    • 1996
  • The Anyang-cheon is one of the Han River tributaries in Seoul Metropolitan area. It is 35.1km long, has a basin area of 287km2 and touches seven cities of Kyounggi Province and part of Seoul. The purpose of this study were 1) to reconstruct the ancient stream network and to investigate the change of landuse in Anyang-cheon watershed between 1957 and 1991,2) to measure the change of the hydrologic ¬acteristics with urbanization, 3) to suggest the institutional solutions to reduce natural hazard as the area has urbanizedThe main results are as follows: 1.Anyang-cheon river basin has experienced the rapid urbanization and industrialization since 1957. Anyang-cheon stream network was oversimplified in the watershed. The total stream length decreased atributaries in the upper part of river basin have eliminated or buried undergrolmd in pipes. 2.Urbanization impacted to all of the area of Anyang-cht'On watershed. Urbanization in Anyang-cheon watershed corresponds to the large portion of flat area, especially flood - prone zone of river side, and the small portion of Greenbelt to constrain urban expantion in cities. 3.The urbanization of Anyang-cheon watershed produces fundamental changes in watershed hydrology. As infiltration is reduced by the creation of extensive pavement, concrete surface, and sewer pipe, runoff moves more quickly from upland to stream. As a result, runoff from the watershed is flashier, increasing flood hazardAs urban area continue to grow we will need to better utilize stream by protecting and enhancing stream systems.otecting and enhancing stream systems.tems.

  • PDF