• Title/Summary/Keyword: sewage treatment system

Search Result 371, Processing Time 0.025 seconds

Degradation characteristics and intermediate study of tetracycline in aqueous system by liquid ferrate(VI) (Liquid ferrate(VI)에 의한 다양한 수중 환경에서의 tetracycline 분해특성 및 중간생성물 연구)

  • Park, Kyeong-Deok;Kang, Dong-Hwan;So, Yoon-Hwan;Cho, Joung-Hyung;Kim, Il-Kyu
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.34 no.1
    • /
    • pp.61-73
    • /
    • 2020
  • Tetracycline is one of the most commonly used antibiotics in domestic and foreign livestock industries to suppress the growth of pathogens. Tetracycline has been reported as a non-biodegradable compound. Therefore it has been not completely removed in the sewage treatment process. In this study, tetracycline was degraded using liquid ferrate (VI). Based on these experiments, the optimal water condition (pH and water temperature) were selected, appropriate liquid ferrate (VI) dosage was calculated, and finally the degradation pathway was estimated with the intermediate products detected by LC/MS/MS. All degradation experiments were completed within 30 seconds and the optimal condition was obtained in basic condition (pH 10) at room temperature (20℃). And the appropriate molar ratio between tetracycline and liquid ferrate (VI) was 12.5:1. Finally, 12 intermediate products were detected with LC/MS/MS and the degradation pathways and the degradation pathways and proposed the degradation pathways.

Development and Application of Two Dimensional Water Quality Model on the Downstream of Han River (한강하류뷰에서의 2차원 수질모형의 개발 및 적용)

  • Han, Geon-Yeon;Lee, Eul-Rae
    • Journal of Korea Water Resources Association
    • /
    • v.35 no.3
    • /
    • pp.261-274
    • /
    • 2002
  • The purpose of this study was to develop two dimensional contaminant transport numerical model by finite element method. The developed model system was tested for water quality analysis when contaminants from tributaries and sewage treatment Plants flow into the main river. In this study, the model was to perform calibration for reasonable parameter production and verification for reliability and accuracy. And, the proposed model was applied on the downstream of Han river using calibrated parameters. These results represented real con taminant distribution profile along the channel, and produced the good agreement in comparing calculated vague with measured value.

Degradation characteristics and reaction pathways of tetracycline by ferrate(VI) in various aqueous conditions (Ferrate(VI)를 이용한 다양한 수중 환경에서의 tetracycline의 분해 특성 및 반응 경로 연구)

  • Park, Kyeong-Deok;Kim, Il-Kyu
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.35 no.1
    • /
    • pp.27-37
    • /
    • 2021
  • Tetracycline is one of the most commonly used as antibiotics for the livestock industry and it is still widely used nowadays. Tetracycline and its metabolites are excreted with excrement, which is difficult to completely removed with conventional sewage treatment, therefore it is apprehended that the tetracycline-resistant bacteria occurs. In this study, the oxidant named ferrate(VI) was used to degrade the tetracycline and investigate the reaction between ferrate(VI) and tetracycline under various aqueous conditions. The highest degradation efficiency of tetracycline occurred in basic condition (pH 10.1 ± 0.1) because of the pKa values of tetracycline and ferrate(VI). The results also showed the effect of water temperature on the degradation of tetracycline was not significant. In addition, the dosage of ferrate(VI) was higher, the degradation of tetracycline and the self-degradation of ferrate(VI) also higher, finally the efficiency of ferrate(VI) was lower. The results said that the various mechanisms effects the reaction of ferrate(VI) oxidation, it required the consideration of the characteristics of the target compound for optimal degradation efficiency. Additionally, intermediate products were detected with LC/MS/MS and three degradation pathways were proposed.

A Study on Process Optimization for CSOs Application of Horizontal Flow Filtration Technology (수평흐름식 여과기술의 CSOs 적용을 위한 공정 최적화 연구)

  • Kim, Jae-Hak;Yang, Jeong-Ha;Lee, Young-Shin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.2
    • /
    • pp.56-63
    • /
    • 2018
  • The management of Combined Sewer Overflows(CSOs) and Separated Sewer Overflows(SSOs) discharge directly to the effluent system in an untreated state, which occurs when the facility capacity is exceeded due to heavy rain, has become an important issue in recent years as the heavy rain becomes a regular phenomenon. Despite the continuous development of filtration technology, targeting densely populated urban areas, CSOs are rarely applied. Therefore, this study was carried out to optimize the process to apply CSOs in a pilot-scale horizontal flow filtration system with a rope-type synthetic fiber. The research was carried out in two steps: a preliminary study using artificial samples and a field study using sewage. In the preliminary study using an artificial sample, head loss of the filter media itself was analyzed to be approximately 1.1cm, and the head loss was increased by approximately 0.1cm as the linear velocity was increased by 10m/hr. In addition, the SS removal efficiency was stable at 81.4%, the filtration duration was maintained for more than 6 hours, and the average recovery rate of 98% was obtained by air backwashing only. In the on-site evaluation using sewage, the filtration duration was approximately 2 hours and the average removal efficiency of 83.9% was obtained when belt screen (over 450 mesh) was applied as a pre-treatment process to prevent the premature clogging of filter media. To apply the filtration process to CSOs and SSOs, it was concluded that the combination with the pre-treatment process was important to reinforce the hydraulic dimension for the stable maintain of operation period, rather than efficiency. Compared to the dry season, the quality of incoming sewage was lower in the rainy season, which was attributed to the characteristics of the drainage area with higher sanitary sewerage. In addition, the difference in removal efficiency according to the influent quality of the wet season and dry season was small.

Monitoring of Micro Noxious Chemicals Caused by Fiber and Chemistry Industrial Wastewater on the Nakdong River Water System (낙동강 수계의 섬유 및 화학 산업폐수로부터 발생하는 미량유해화학물질의 모니터링)

  • Kim Man-Il;Kang Mee-A
    • The Journal of Engineering Geology
    • /
    • v.16 no.2 s.48
    • /
    • pp.145-152
    • /
    • 2006
  • Industry development caused numerical and quantitative increase of noxious chemical substances that contain risk assessment in water resources. For use of efficient water resources a pre-treatment of contaminant source which is flowed in water resources is recognized in essential process. Therefore, the discharged water quality from discharged company began to control contaminant by total amount of pollutant in domestic. However, to estimate closely chemical substances it is not proved up to now, monitoring is very important. This study achieved a monitoring of micro noxious chemical substance by fiber and chemistry industrial wastewater inflow to examine risk assessment of the water system of Nakdong river. Chloroform was measured highest among volatile organic compounds (VOCs) that the results of water quality of influent and effluent are detected from 7 companies of study area. The other side, because measured value of detected chloroform is indefinite detection level in the same company, it is difficulty in management of water quality. However it may not be much effects of the water system of Nakdong river because these company's effluent is high treatment efficiency of chloroform (more than 88%) in sewage treatment plant. On the other hand, in the investigated results for the European Union specified priority substance that is detected to relationship influent and effluent from fiber/chemistry associated industries, these substances were not detected and domestic data was hardly referred. Therefore, data construction of continuous monitoring about this water quality may have to be achieved certainly to utilize as country policy.

Development of Automatic Water Sampler with Sensor for Practical Measurement (현장측정용 센서부착 자동채수기 개발)

  • Kim, Jin-Hyok;Han, Seong-Kuk;Lee, Jin-Pill;Kim, Jae-Yong
    • Applied Chemistry for Engineering
    • /
    • v.21 no.6
    • /
    • pp.632-637
    • /
    • 2010
  • Considering the water quality regulation of total emission system which is enforced with hydro TMS and so on operating currently, automatic water sampler must be necessary in the viewpoint of national interest for conservation of water resources. This study aimed to develope automatic water sampler for the purpose of decreasing spends on foreign currency which is relied on import from abroad and upgrading the functional efficiency simultaneously. We have made an effort for developing results as follows with some cases. First, flow meter with a sensor equiped into automatic water sampler for field measurement which can perform linkage operation was developed. Second, remote-D/L system was developed which was able to monitor and store some transmitted data from practical measurement sensor. Also, automatic water sampler was developed in this research that operates in a sewage treatment plant, and finally, we confirmed that our system is able to apply to the field well.

The Development of Remote Monitoring System for Storm Overflow Chamber Device (우수토실 일체형 하수유량조절장치 원격관리시스템 개발)

  • Jeon, In-Jae;Kim, Ki-Bong
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.6
    • /
    • pp.61-68
    • /
    • 2018
  • This paper propose the remote monitoring system using LoRa networks about storm overflow chamber, which is a device designed to discharge rainwater directly to a sewage treatment plant when it reaches a certain amount of rainfall during precipitation. In this system, when the information produced by the sensor is transmitted to the LoRa network server and updated, the application server can automatically receive data through the implemented communication interface. The application server carries out management functions of storm overflow chamber devices and subscription information, collects measured flow rate and opening-closing information, and provides statistical information using the collected data. The android app performs a firebase-based notification function to prompt the user of malfunctioning of the storm overflow chamber device.

Intellignce Modeling of Nonlinear Process System Using Fuzzy Neyral Networks-based Structure (퍼지-뉴럴네트워크 구조에 의한 비선형 공정시스템의 지능형 모델링)

  • 오성권;노석범;남궁문
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.5 no.4
    • /
    • pp.41-55
    • /
    • 1995
  • In this paper, an optimal idenfication method using fuzzy-neural networks is proposed for modeling of nonlinear complex systems. The proposed fuzzy-neural modeling implements system structure and parameter identification using the intelligent schemes together wlth optimization theory, linguistic fuzzy implication rules, and neural networks(NNs) from input and output data of processes. Inference type for this fuzzy-neural modeling is presented as simplified inference. To obtain optimal model, the learning rates and momentum coefficients of fuzzy-neural networks(FNNs) are tuned automatically using improved modified complex method and modified learning algorithm. For the purpose of its application to nonlinear processes, data for route choice of traffic problems and those for activateti sluge process of sewage treatment system are used for the purpose of evaluating the performance of the proposed fuzzy-neural network modeling. The results show that the proposed method can produce the intelligence model with higher accuracy than other works achieved previously.

  • PDF

Polypropylene Bundle Attached Multilayered Stigeoclonium Biofilms Cultivated in Untreated Sewage Generate High Biomass and Lipid Productivity

  • Kim, Byung-Hyuk;Kim, Dong-Ho;Choi, Jung-Woon;Kang, Zion;Cho, Dae-Hyun;Kim, Ji-Young;Oh, Hee-Mock;Kim, Hee-Sik
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.9
    • /
    • pp.1547-1554
    • /
    • 2015
  • The potential of microalgae biofuel has not been realized because of the low productivity and high costs associated with the current cultivation systems. In this study, a new low-cost and transparent attachment material was tested for cultivation of a filamentous algal strain, Stigeoclonium sp., isolated from wastewater. Initially, the different materials tested for Stigeoclonium cultivation in untreated wastewater were nylon mesh, polyethylene mesh, polypropylene bundle (PB), polycarbonate plate, and viscose rayon. Among the materials tested, PB led to a firm attachment, high biomass (53.22 g/m2, dry cell weight), and total lipid yield (5.8 g/m2) with no perceivable change in FAME profile. The Stigeoclonium-dominated biofilm consisted of bacteria and extracellular polysaccharide, which helped in biofilm formation and for effective wastewater treatment (viz., removal efficiency of total nitrogen and total phosphorus corresponded to ~38% and ~90%, respectively). PB also demonstrated high yields under multilayered cultivation in a single reactor treating wastewater. Hence, this system has several advantages over traditional suspended and attached systems, with possibility of increasing areal productivity three times using Stigeoclonium sp. Therefore, multilayered attached growth algal cultivation systems seem to be the future cultivation model for large-scale biodiesel production and wastewater treatment.

Assessment of Estuary Reservoir Water Quality According to Upstream Pollutant Management Using Watershed-Reservoir Linkage Model (유역-호소 연계모형을 이용한 상류 오염원 관리에 따른 담수호 수질영향평가)

  • Kim, Seokhyeon;Hwang, Soonho;Kim, Sinae;Lee, Hyunji;Jun, Sang Min;Kang, Moon Seong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.64 no.6
    • /
    • pp.1-12
    • /
    • 2022
  • Estuary reservoirs were artificial reservoir with seawalls built at the exit points of rivers. Although many water resources can be saved, it is difficult to manage due to the large influx of pollutants. To manage this, it is necessary to analyze watersheds and reservoirs through accurate modeling. Therefore, in this study, we linked the Hydrological Simulation Program-FORTRAN (HSPF), Environmental Fluid Dynamics Code (EFDC), and Water quality Analysis Simulation Program (WASP) models to simulate the hydrology and water quality of the watershed and the water level and quality of estuary lakes. As a result of applying the linked model in stream, R2 0.7 or more was satisfied for the watershed runoff except for one point. In addition, the water quality satisfies all within 15% of PBIAS. In reservoir, R2 0.72 was satisfied for water level and the water quality was within 15% of T-N and T-P. Through the modeling system, We applied upstream pollutant management scenarios to analyze changes in water quality in estuary reservoirs. Three pollution source management were applied as scenarios, the improvement of effluent water quality from the sewage treatment plant and the livestock waste treatment plant was effective in improving the quality of the reservoir water, while the artificial wetland had little effect. Water quality improvement was confirmed as a measure against upstream pollutants, but it was insufficient to achieve agricultural water quality, so additional reservoir management is required.