• Title/Summary/Keyword: sewage treatment plant

Search Result 520, Processing Time 0.028 seconds

Determination of Optimal Livestock Wastewater Treatment Process for Linked Treatment in Sewage Treatment Plant (하수처리장 연계처리를 위한 가축분뇨 최적 처리공정 선정에 관한 연구)

  • Kim, Choong Gon;Shin, Hyun Gon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.20 no.3
    • /
    • pp.52-59
    • /
    • 2012
  • As the result of reviewing the linked treatment of water quality for treating process at public livestock wastewater treatment facilities for fair selection of the proper linked process in case of linking sewage treatment plant for livestock wastewater, in case of wastewater processed by bio-reactor that is only biologically-treated, the load factor showed relatively high as 1.67%(base on design quality), 2.59%(base on operation quality) regarding COD and 3.69%(base on design quality), 7.67%(base on operation quality) regarding $COD_{Mn}$ but it is judged that there is nearly no influence on the operation of sewage treatment plan. And, in case of oxidized flotation-treated water & biofiltlation-treated water that are the advanced wastewater treatment, the load factor is approximately 1% and there is concern about the installation of excessive facilities in case of installing the advanced wastewater treatment. So, in case of considering the economic efficiency & stable operation of sewage treatment plant S, it is judged to be desirable to link with wastewater processed by bio-reactor that is biologically-treated.

Appropriate Sewerage Systems for Korea (우리나라 적합 하수도시설 및 관리방안)

  • 이상은
    • Journal of environmental and Sanitary engineering
    • /
    • v.7 no.2
    • /
    • pp.37-52
    • /
    • 1992
  • Since the first sewage treatment plant was constructed in 1976, the sewerage systems of Korea have been rapidly expanded. As of the end of 1991, 22 sewage treatment plants with total capacity of 5.4 million tons/day are in operation which is equivalent of 3395 total daily sewage generation. Total extension of sewer 39.534 km in 1990 which is 55% of the target extension for the year 2001. However, the most sewage treatment plants employ activated sludge process which may not be suitable for medium and/or small scale plants. The poor existing sewer systems do not effectively collect and transport sewage to adversely affect the function of sewage treatment plant. To select the appropriate treatment system, the cities are classified into 3 categories such as large and medium size inland cities, small size cities and coastal cities. Considering the criteria suggested during this study, appropriate treatment processes were selected for each category. Conventional activated sludge process and step aeration process were found to be the most appropriate for big inland cities while biological nutrient removal processes should be considered for the cities discharge the effluent to lakes or reservoirs. RBC or Oxidation Ditch process might be appropriate for the medium size cities while several processes which do not require skilled operation and maintenance were suggested for the small cities. Ocean discharge after primary treatment can be considered for some east coast cities, Appropriate methodology to rehabilitate the existing sewers and strategy to convert combined sewer system to separate sewer system were proposed. This paper also include the appropriate management system for industrial wastewater, sludge and nightsoil.

  • PDF

Optimal Management Scheme for Phosphorus Discharged from Public Sewage Treatment Plant Located in Upstream Basin of Paldang Lake (팔당호 상류수계에 위치한 공공 하수종말처리시설의 총인 배출 최적관리)

  • Woo, Younggug;Park, Eunyoung;Jeon, Yangkun;Jeong, Myungsuk;Rim, Jaymyung
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.2
    • /
    • pp.200-209
    • /
    • 2011
  • The purpose of the study is to optimally manage sewage treatment plant with analysis of phosphorus contribution and improvement of water quality contributing rate in the effect of inflowing point of effluent and Pal-Dang lake after reducing T-P discharge from large scale public sewage treatment plant at upstream of Pal-Dang lake. Also, this study, for enforcement of T-P in effluent, plans optimal management of effluent T-P through examining propriety of environmental, technological, and economical aspect such as water quality standard of domestic and foreign T-P and related policy. In regarding optimal management of T-P discharged from public sewage treatment plant located in upstream of Pal-Dang lake, the study drew following conclusions. With the optimal management of public sewage treatment plant, it showed that a pollution level became higher in the order of Sumgang E in South-Han river, C in Dalcheon, B1 B2, A in North-Han river, and J in Kyungancheon, and it is required reduction of T-P first. The highest value in analysis of benefit-costs from sewage treatment plant in the selected research area was Kyungan B, and the others are with the order of Jojong A, Bokha A, Kyungan A, and Yanghwa A. With result of this study, all 14 areas are required more enforced phosphorus treatment. The study resulted that the most top priority areas were Hangang F, Sumgang B, and Gyungan A, top priority areas were Bokha A, Dalcheon B, and Cheongmi A, priority areas were Hangang E, Heukcheon A, Gyungan B, and Jojong A, and potential areas were Sumgang A, Yanghwa A, Dalcheon A, and Hangang D. It seems to be appropriate to apply 0.2 mg/L of T-P treatment for water supply source reservation, 0.5 mg/L for the other areas by locally, and 0.2~0.5 mg/L for biological nitrogen phosphorus treatment method and 0.5~1 mg/L for Conventional Activated Sludge by technologically. Also, it may be appropriate to apply 0.2 mg/L for the most top priority area(I), 0.3 mg/L for the top priority area(II), 0.4 mg/L for priority area(III), and 0.5 mg/L for potential area(IV) by the separation of priority area.

A Study on Unit Treatment Cost of Sewage Disposal Plant in the Service Area under Highway (생물학적 처리시설의 처리비 원단위 산정에 관한 연구 -고속도로 휴게소를 중심으로-)

  • 장철현;박상우;홍태석
    • Journal of Environmental Science International
    • /
    • v.11 no.6
    • /
    • pp.537-541
    • /
    • 2002
  • This study aimed to obtain the relative formula with the unit treatment cost according to the treatment of a sewage plant in the service area under highway. The following results were obtained. The correlative formula connected to amount of sewage(Q)generation was as follows ; between an annual amount of sale(C) showed Q=19.113$.$C$\^$0.9294/, and between the number of users(P) showed Q=2${\times}$10$\^$-8/ $.$P$^2$- 0.0298$.$P + 75,666. The correlative formula connected to the treatment cost was as follows , according to the amount of sewage generation showed S= 3${\times}$10$\^$-6/$.$Q 0-0.2266$.$Q+29,895, according to the elimination of BOD(E) showed S=6${\times}$10$\^$-5/$.$E$^2$-0.6717$.$E + 27,744, according to the annual amount of sale showed S=0.0005 C$^2$-4.8013$.$C + 35,118, with the number, of persons(P) using the service area showed S= 2${\times}$10$\^$-8/ $.$P$^2$- 0.046$.$P + 48,803.

A Study on the Influence of a Sewage Treatment Plant's Operational Parameters using the Multiple Regression Analysis Model

  • Lee, Seung-Pil;Min, Sang-Yun;Kim, Jin-Sik;Park, Jong-Un;Kim, Man-Soo
    • Environmental Engineering Research
    • /
    • v.19 no.1
    • /
    • pp.31-36
    • /
    • 2014
  • In this study, the influence of the control and operational parameters within a sewage treatment plant were reviewed by performing multiple regression analysis on the effluent quality of the sewage treatment. The data used for this review are based on the actual data from a sewage treatment plant using the media process within the year 2012. The prediction models of chemical oxygen demand ($COD_{Mn}$) and total nitrogen (T-N) within the effluent of the 2nd settling tank based on the multiple regression analysis yielded the prediction accuracy measurements of 0.93 and 0.84, respectively; and it was concluded that the model was accurately predicting the variances of the actual observed values. If the data on the energy spent on each operating condition can be collected, then the operating parameter that conserves energy without violating the effluent quality standards of COD and T-N can be determined using the regression model and the standardized regression coefficients. These results can provide appropriate operation guidelines to conserve energy to the operators at sewage treatment plants that consume a lot of energy.

Application of the Proper Air Supply Amount Based on the Influent Water Quality for the Development of Efficient Blower Control Logic in Sewage Treatment Plants (하수처리장의 효율적인 Blower Control Logic 개발을 위한 유입수질 기반 공기공급량 적용 연구)

  • Yeo, Wooseok;Kim, Jong Kyu
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.42 no.4
    • /
    • pp.493-499
    • /
    • 2022
  • The standards pertaining to the quality of discharged water in sewage treatment plants are strengthening, and accordingly, facilities in sewage treatment plants are being upgraded. In addition, the discharge water quality of sewage treatment plants must be maintained at a high level, and efficient sewage treatment plant operations have thus emerged as a very important issue. For the efficient operation of sewage treatment plants, this study applied a basic blowing amount calculation method based on sewage facilities to evaluate the required oxygen amount and blowing amount according to inflow water quality by logicizing various influencing factors. As a result of calculating the amount of air blown by applying actual April water quality data from sewage treatment plant A to the blower demand calculation developed through this study, it was found that the average amount of air blown was reduced by about 12%. When the blower demand calculation developed here is applied to an actual sewage treatment plant, the amount of air blown can be controlled based on the inflow water quality. This can facilitate the realization of an autonomous control of sewage treatment plants, in contrast to the existing sewage treatment operation method that relies on operational experience of operator. In addition, it is expected that efficient sewage treatment plants can be operated by reducing blowing amounts and power costs, which will contribute to both energy and carbon savings.

A Study on Operation Control Technology Required for Introduction of Intelligent Sewage Treatment Plant (스마트 하수처리장 도입에 필요한 운전제어기술에 관한 연구)

  • Lee, Jiwon;Kim, Yuhyeon;Gil, Kyungik
    • Journal of Wetlands Research
    • /
    • v.24 no.1
    • /
    • pp.38-43
    • /
    • 2022
  • Smart sewage treatment plant means creating a safe and clean water environment by establishing an ICT-based real-time monitoring, remote control management and intelligent system for the entire sewage treatment process. The core technology of such a smart sewage treatment plant can be operation control technology using measuring instruments. This research team analyzed and suggested the operation control technologies necessary for the establishment of the intelligent business by referring to the intelligent research projects of the sewage treatment plant in progress in Korea. As a result of the analysis, a total of six removal technologies were presented, including control by scale, reflow water control, linked treated water control, chemical quantity control, winter operation control, and total organic carbon control. By size, standards that can be classified into small and medium-sized large-scale are presented, and in the case of reflow water control, the location of water quality and flow sensors capable of managing reflow water is suggested. In the case of the linked treated water control, the influence and control points of the linked treated water on the sewage treatment plant were presented, and in the case of the chemical injection volume control, a system capable of optimizing the amount of chemical injection according to the introduction of an intelligent sewage treatment plant was presented. In the case of winter operation, the sensors and pumps to be controlled are suggested when considering the decrease in nitrification due to the decrease in water temperature. In the case of total organic carbon control, an interlocking system considering the total amount of pollution in the future was proposed. These operation control scenarios are expected to be used as basic data to be used in intelligent sewage treatment algorithms and scenarios in the future.

Design of Type-2 Radial Basis Function Neural Networks Modeling for Sewage Treatment Process (하수처리 공정을 위한 Type-2 RBF Neural Networks 모델링 설계)

  • Lee, Seung-Cheol;Kwun, Hak-Joo;Oh, Sung-Kwun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.10
    • /
    • pp.1469-1478
    • /
    • 2015
  • In this paper, The methodology of Type-2 fuzzy set-based Radial Basis Function Neural Network(T2RBFNN) is proposed for Sewage Treatment Process and the simulator is developed for application to the real-world sewage treatment plant by using the proposed model. The proposed model has robust characteristic than conventional RBFNN. architecture of network consist of three layers such as input layer, hidden layer and output layer of RBFNN, and Type-2 fuzzy set is applied to receptive field in contrast with conventional radial basis function. In addition, the connection weights of the proposed model are defined as linear polynomial function, and then are learned through Back-Propagation(BP). Type reduction is carried out by using Karnik and Mendel(KM) algorithm between hidden layer and output layer. Sewage treatment data obtained from real-world sewage treatment plant is employed to evaluate performance of the proposed model, and their results are analyzed as well as compared with those of conventional RBFNN.

Toxicity characteristics of sewage treatment effluents and potential contribution of micropollutant residuals

  • Kim, Younghee;Farnazo, Danvir Mark
    • Journal of Ecology and Environment
    • /
    • v.41 no.11
    • /
    • pp.318-327
    • /
    • 2017
  • Background: A typical sewage treatment plant is designed for organic and nutrient removal from municipal sewage water and not targeted to eliminate micropollutants such as pesticides, pharmaceuticals, and nano-sized metals which become a big concern for sustainable human and ecological system and are mainly discharged from sewage treatment plant. Therefore, despite contaminant removal by wastewater treatment processes, there are still remaining environmental risks by untreated pollutants in STP (sewage treatment plant) effluents. This study performed aquatic toxicity tests of raw wastewater and treated effluents in two sewage treatment plants to evaluate toxicity reduction by wastewater treatment process and analyze concentration of contaminants to reveal potential toxic factors in STP effluents. Methods: Water samples were collected from each treatment steps of two STPs, and acute and chronic toxicity tests were conducted following USEPA (United States Environmental Protection Agency) and OECD (Organization for Economic Cooperation and Development) guidelines. Endpoints were immobility for mortality and reproduction effect for estrogenicity. Results: Acute $EC_{50}s$ (median effective concentration) of influents for Seungki (SK) and Jungnang (JN) STPs are $54.13{\pm}32.64%$ and $30.38{\pm}24.96%$, respectively, and reduced to $96.49{\pm}7.84%$ and 100%. Acute toxicity reduction was clearly correlated with SS (suspended solids) concentration because of filter feeding characteristics of test organisms. Chronic toxicity tests revealed that lethal effect was reduced and low concentration of influents showed higher number of neonates. However, toxicity reduction was not related to nutrient removal. Fecundity effect positively increased in treated wastewater compared to that in raw wastewater, and no significant differences were observed compared to the control group in JN final effluent implying potential effects of estrogenic compounds in the STP effluents. Conclusions: Conventional wastewater treatment process reduced some organics and nutritional compounds from wastewater, and it results in toxicity reduction in lethal effect and positive reproductive effect but not showing correlation. Unknown estrogenic compounds could be a reason causing the increase of brood size. This study suggests that pharmaceutical residues and nanoparticles in STP effluents are one of the major micropollutants and underline as one of estrogenic effect factors.

Development of NH3 Emission Factors using a Dynamic Flux Chamber in a Sewage Treatment Plant (부유형 챔버를 이용한 하수처리장에서의 암모니아 배출 특성 연구)

  • Jeon, Eui-Chan;Sa, Jae-Hwan;Park, Jong-Ho
    • Journal of Environmental Impact Assessment
    • /
    • v.14 no.5
    • /
    • pp.263-273
    • /
    • 2005
  • In this study, the major emission procedures and emission characteristics were identified at the site of sewage treatment plant which is one of the major sources of ammonia. At the same time the emission factors and emission rates were estimated. In order to calculate the emission flux, we used a Dynamic Flux Chamber(DFC), which is found to be a proper sampling devise for area sources such as sewage treatment plant. It was found that the most stable sampling condition was when the stirrer's speed of DFC was 120RPM, and it would be the best time to take a sample 60 minutes later after setting the chamber. The relatively higher flux was shown in Autumn compared to summer and winter. Annual ammonia emission rates procedures were calculated as $906.32{\mu}g/activity-ton$, $1,114.72{\mu}g/activity-ton$ and $437.53{\mu}g/activity-ton$ each at the primary settling basin, aeration basin and the final settling basin, respectively. The ammonia emission rate the highest at in the aeration basin according to this test. This results was due to that the surface of aeration basin or the final settling basin is relatively wider than the primary settling basin.