• Title/Summary/Keyword: sewage treatment plant

Search Result 520, Processing Time 0.271 seconds

Analysis of RCSTP Sewage Characteristics and Treatment Efficiency in Rural Area (농촌 지역 마을하수도 유입 하수 특성과 효율 분석)

  • Im, Jiyeol;Jung, Donggi;Gil, Kyungik
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.6
    • /
    • pp.851-858
    • /
    • 2012
  • This study conducted a result analysis on operation of 26 Rural Community Sewage Treatment Plant (RCSTP) newly constructed in Yeong-yang, Bong-hwa and An-dong areas which are located at the upper region of An-dong Dam and Im-ha Dam. Based on operation result, an analysis on characteristics of sewage in each area and the treatment efficiency of the installed treatment process was conducted. The result of analysis on characteristics of sewage has shown the difference in concentration of the sewage according to area characteristics. Sewage in areas with frequent occurrence of agricultural water and livestock wastewater had high concentration. It is important to select the most suitable treatment process when selecting a treatment process for RCSTP according to properties of sewage in each area. As a result of operation, the disposal efficiency for organic matter and suspended solids was stable with less fluctuation, but the disposal efficiency for nitrogen and phosphorus showed high fluctuation. This signifies that it is necessary to pay attention to operation condition management of nitrogen and phosphorus when operating RCSTP.

Estabilishment of Community plant (생활배수처리시설의 정비와 금후의 방향)

  • 김경호
    • Journal of environmental and Sanitary engineering
    • /
    • v.6 no.1
    • /
    • pp.27-30
    • /
    • 1991
  • Since the diffusion rate of sewage treatment plant is about 30% of the country. It is not enough to cope with entire sewage treatment of the community. Therefore, the septic tank is introduced which is connected with water flush toilet only. It is estimated that the large portion of water pollution has occured due to untreated sewage such as pollutants of kitchen, laundry and bathtub water, etc., which are not go through the existing septic tank. However, the construction of community plant which is could treat most of household run sewage should have flexibility in type, treatment method, effectiveness and economy which are adoption of the community. Without the treatment of combined household run sewage, the improvement of water pollution will be hardly expected.

  • PDF

Effects of Sewage Treatment on Characteristics of Sludge as a Composting Material (하수처리가 퇴비화를 위한 하수 슬러지 특성에 미치는 영향)

  • Kim, Jae-Koo;Kim, Jong-Soo
    • Applied Biological Chemistry
    • /
    • v.41 no.2
    • /
    • pp.181-186
    • /
    • 1998
  • The effects of sewage treatment on characteristics of sludge as a composting material were investigated for a year during the initial operation at the full-scale Chunan sewage treatment plant. Due to the shortage of design capacity of belt press, a sludge dewatering unit, non-volatile solids were recirculating and concentrating in the treatment plant, resulting in an increase of MLSS and a decrease in F/M ratio at the activated sludge system. Special attention is required for long term operations since the increase of non-volatile solids in the plant would deteriorates the treatment efficiency. The sewage sludge of the Chunan sewage treatment plant showed 79.5% of water content, 11.6% of organic content, and C/N ratio of 6.1, and contained As 1.8 mg/kg, Cd 27 mg/kg, Hg <0.1 mg/kg, Pb 54 mg/kg, T-Cr 370 mg/kg, and Cu 1,100mg/kg of heavy metals. In order to be used as raw material for optimum composting, the sewage sludge requires bulking agents for moistrure/porosity control and a carbon source for adjusting C/N ratio. However, the sewage sludge is not adequate as a soil conditioner after composing due to a high content of heavy metals. If the sewage sludge has to he used as a soil conditioner after composting, it as required to identify and remove tire industrial wastewater portions in tire influent of the plant since heavy metals in the influent were mostly concentrated in dewatered sludge.

  • PDF

A Study on Fuzzy Control Method of Energy Saving for Activated Sludge Process in Sewage Treatment Plant (하수처리 활성오니공정의 에너지 절감을 위한 퍼지 제어 방법에 관한 연구)

  • Nahm, Eui-Seok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.11
    • /
    • pp.1477-1485
    • /
    • 2018
  • There are two major issues for activated sludge process in sewage treatment plant. One is how to make sewage be more clean and the other is the energy saving in sewage treatment process. The major monitoring sewage qualities are chemical oxygen demand, phosphorus, nitrogen, suspended solid in effluent. These are transmitted to the national TMS(Telemetry Monitoring System) at every hour. If these exceed the environmental standard, the environmental charges imposed. So, these water qualities are to be controlled below the environmental standard in operation of sewage treatment plant. And recently, the energy saving is also important in process operation. Over 50% energy is consumed in blowers and motors for injection oxygen into aeration tank. So, with the water qualities to be controlled below the environmental standard, the energy saving also is to be accomplished for efficient plant management. Almost researches are aimed to control water quality without considering energy saving. AI techniques have been used for control water quality. AI modeling simulator provided the optimal control inputs(blower speed, waste sludge, return sludge) for control water quality. Blower speed is the main control input for activated sludge process. To make sewage be more clean, the excessive blower speed is supplied, but water quality is not better than the previous. In results, non necessary energy is consumed. In this paper we propose a new method that the energy saving also is to be accomplished with the water qualities to be controlled below the environmental standard for efficient plant management. Water qualities in only aeration tank are used the inputs of fuzzy models. Outputs of these models are chemical oxygen demand, phosphorus, nitrogen, suspended solid in effluent and have the environmental standards. In test, we found this method could save 10% energy than the previous methods.

Optimum Operation of a PVDF-type Hollow Fiber Membrane Bioreactor for Continuous Sewage Treatment

  • Shin, Choon-Hwan
    • Journal of Environmental Science International
    • /
    • v.19 no.11
    • /
    • pp.1315-1322
    • /
    • 2010
  • A membrane bioreactor (MBR) was designed using polyvinylidene fluoride(PVDF)-type hollow fiber membrane modules with a treatment capacity of 10 ton/day. A pilot plant was installed in a sewage treatment plant and was operated with an intermittent aeration method which avoids any concentration gradient of suspended solids (SS) in the MBR. For continuous operation, the pilot plant was first tested with influent (mixed liquor suspended solid:MLSS of 1000-2000 mg/L) of aeration tanks in the sewage treatment plant. The MBR was pre-treated with washing water, 10% ethanol solution, 5% NaOCl solution and finally washing water, one after another. To demonstrate the effect of the MBR on sewage treatment, compared with conventional activated sludge processes, we investigated the relationships among permeate amount (LMH), change in operation conditions, influent MLSS level and sludge production. It was found that the optimum aeration rate and suction pressure were $0.3\;m^3$/min and 30~31 cmHg, respectively. Under stable conditions in aeration, suction pressure, influent flow rate and drainage, the SS removal efficiency was more than 99.99% even when the MLSS loading rate changes. Compared with conventional activated sludge processes, the MBR was more effective in cost reduction by 27% based on permeate amount and by 51.5% on sludge production.

Available Technology and Integrated Management Plan for Energy-positive in the Sewage Treatment Plant (에너지 생산형 하수처리장을 위한 가용 기술과 통합관리 방안)

  • Song, Minsu;Kim, Hyoungho;Bae, Hyokwan
    • Journal of Korean Society on Water Environment
    • /
    • v.36 no.1
    • /
    • pp.55-68
    • /
    • 2020
  • Because of the intensified environmental problems such as climate change and resource depletion, sewage treatment technology focused on energy management has recently attracted attention. The conversion of primary sludge from the primary sedimentation tank and excessive sludge from the secondary sedimentation tank into biogas is the key to energy-positive sewage treatment. In particular, the primary sedimentation tanks recover enriched biodegradable organic matter and anaerobic digestion process produces methane from the organic wastes for energy production. Such technologies for minimizing oxygen demand are leading the innovation regarding sewage treatment plants. However, sewage treatment facilities in Korea lack core technology and operational know-how. Actually, the energy potential of sewage is higher than sewage treatment energy consumption in the sewage treatment, but current processes are not adequately efficient in energy recovery. To improve this, it is possible to apply chemically enhanced primary treatment (CEPT), high-rate activated sludge (HRAS), and anaerobic membrane bioreactor (AnMBR) to the primary sedimentation tank. To maximize the methane production of sewage treatment plants, organic wastes such as food waste and livestock manure can be digested. Additionally, mechanical pretreatment, thermal hydrolysis, and chemical pretreatment would enhance the methane conversion of organic waste. Power generation systems based on internal combustion engines are susceptible to heat source losses, requiring breakthrough energy conversion systems such as fuel cells. To realize the energy positive sewage treatment plant, primary organic matter recovery from sewage, biogas pretreatment, and co-digestion should be optimized in the energy management system based on the knowledge-based operation.

Case Studies of Energy-Saving Method for Renewable Energy Installation in Sewage Treatment plant (하수처리장 신재생에너지 설치 사례 연구를 통한 에너지 절감 방안)

  • Yoon, Jong-Won;Kim, Chu-Young;Choi, Chang-Kyu
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.4
    • /
    • pp.42-48
    • /
    • 2014
  • Sewage treatment facilities can purify sewage enough to be send to river or sea water, that discharged from human life and industrial activities. In the sewage treatment process, we can get large amount of by-product energy resources and materials such as heat of sewage, digester gas and purified water etc., it can be utilized by applying various technologies thereby we can reduce energy consumption in the process. In this paper, it was analyzed using the data collected from the operational case study for the energy savings effect that can be obtained when using the digester gas, one of the by-product materials of sewage treatment process, for electric power generation. Cost of 623million won is an annual reduction of 4,032MWh corresponding 9% of the annual electricity consumption of the sewage treatment plant, such an alternative power generation using digester gas was proposed in this paper has been verified the feasibility of the proposed reduction of energy.

Protozoa as an Indicator of Activated In Sludge Plant Effluent Quality (원생동물을 이용한 하수처리장의 수질 예측)

  • 이찬형;문경숙
    • Microbiology and Biotechnology Letters
    • /
    • v.28 no.6
    • /
    • pp.361-366
    • /
    • 2000
  • Genera and number of protozoa were investigated in the conventional activated sludge pilot plant used for the treatment of municipal sewage and pre-treated night soil-containing sewage. In both case, the predominant protozoa was ciliates and among them Vorticella was the most common. In the pilot plant where pre-treated night soil was mixed with municipal sewage, genera of free-swimming ciliates, flagellates and amoeba was higher than in those withour night soil. Correlation analysis on the quality of effluent and protozoa indicates that municipal sewage has positive correlation with protozoa. However in the pilot plan 샐 sewage contatinin pre-treated night coil soil more samples show negative correlation. Followed equations were derived by the regression analysis of BOD in both the pilot plants. In case of pilot plant A of municipal sewage, the analysis B of munici-pal and pre-treated night soil-containing sewage, the analysis of BOD was $6.731$\times$10_{-2}$ $\times$Bodo+0.306(Adjusted $R^2$=0.864). At low temperature, number of protozoa was decreased to 35% and among therm, Aspidisca was the most common genus. Therefore, protozoa can be used as indicator of quality of the effluent in sewage treatment plants.

  • PDF

Study on the Suitability Selection for Construction of Seaweed Bed in Sewage Water Ocean Outfall Area (해양방류수역에서 해조장 조성적지 선정 연구)

  • SHIN, Bong-Kyun;CHOI, Chang-Geun
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.27 no.4
    • /
    • pp.1021-1030
    • /
    • 2015
  • For the water quality improvement in the ocean outfall area of sewage treatment plant, this study tried to control the water quality of outfall area using the biofilter method through seaweeds, a way of ecological engineering treatment that is applicable in the marine ecosystem. Therefore, this research made an attempt the main factors necessary for creating seaweed bed to improve water quality in the outfall area of sewage treatment plant, and the results are as follows. In the case of making the seaweed bed in the ocean outfall area of sewage treatment plant, Habitat Suitability Index of Ecklonia cava per all survey points, considered physical and physico-chemical factors in 5~10 meters below sea level, was 50~93% (average 80%), so this seaweed, Ecklonia cava, was suitable for making the seaweed bed.

The Assessment on the Effect of Discharge and Variation of Water Quality from the Sewage Treatment Plants in Seoul (서울시 하수처리장 수질의 변동 및 방류수의 영향 평가)

  • Kwak Mi-Ae;Jung Jong-Heub;Eo Soo-Mi;Lee Hong-Keun
    • Journal of environmental and Sanitary engineering
    • /
    • v.19 no.3 s.53
    • /
    • pp.1-12
    • /
    • 2004
  • This study was conducted to evaluate the variation characteristics of influent and effluent quality from sewage treatment facilities using activated sludge processes and to assess the impact caused by discharge of treated sewage on the receiving water Monthly data of five water quality items (BOD, COD, SS, T-N, T-P) were used to understand the water quality at three sewage treatment plants in Seoul for five years from 1999 to 2003. Concentration differences of water quality parameters were observed between upstream and downstream site at the sewage treatment plant outfall to investigate the impact of discharge in Tan stream and Han river basin. 1. Due to the effect of continuous improvement in sewer system, the concentrations of influent went on increasing generally. 2. Effluent concentrations of BOD, COD and SS showed the trend of a little decreasing, but the trend of increasing in T-N and T-P. 3. In Tan stream basin, the impact of sewage treatment plant discharge was not observed directly, because concentration of discharge was lower than stream water's. But discharges from sewage treatment plants affected water quality at downstream site in Han river, concentration of T-P especially.