• Title/Summary/Keyword: sewage outfall

Search Result 14, Processing Time 0.019 seconds

Initial Mixing Analysis of Ocean Outfalls Discharged into Density Stratified Flowing Ambients (밀도성층화된 흐름수역으로 방류되는 해양방류관의 초기확산해석)

  • Lee, Jae-Hyeong;Seo, Il-Won
    • Journal of Korea Water Resources Association
    • /
    • v.33 no.2
    • /
    • pp.207-217
    • /
    • 2000
  • A numerical model is applied to analyze the mixing characteristics of an axisymmetric turbulent buoyant jet discharged into flowing stratified ambients. The numerical model is a Gaussian-vortex model which incorporates the effects of the vortex pair known as the representative characteristics of far-field in flowing ambients. Six ocean outfalls that have field data for the initial dilution at the water surface are selected for testing the applicability of the developed numerical model. The comparisons of the observed initial dilutions and the simulated ones show that the developed numerical model could be used for the analyses of the initial mixings induced by the sewage diffuser discharged into the ocean.

  • PDF

Foraminifera as an Indicator of Marine Pollution

  • Shin, Im-Chul;Yi, Hi-Il
    • The Korean Journal of Quaternary Research
    • /
    • v.19 no.2
    • /
    • pp.35-37
    • /
    • 2005
  • Sediment samples from five stations at the Shihwa Lake sewage outfall, west coast of Korea, were collected to evaluate the effect of the outfall on benthic foraminifera. Heavy metal (Cu and Zn) polluted eastern part of the Shihwa Lake, adjacent to the Shihwa-Banwol Industrial Complexes, shows barren or nearly barren of benthic foraminifera, and the lowest number of species both at the core top and downcore. Excepting for the barren zone, pyritized benthic foraminifera abundantly occur both at the surface and downcore sediments in the western part of the Shihwa Lake, suggesting that foraminiferal disease by anoxic bacteria. Recent intrusion of pollutants from the Shihwa-Banwol Industrial Complexes and adjacent six major streams severely polluted the Shihwa Lake as shown by the low abundance (number/10 g) of benthic foraminifera, low number of A. beccarii, low species diversity, and absence of both Elphidium spp. and ostracodes at the surface sediments compared to the downcore. Except the barren zone, both pyritized and non-pyritized Ammonia beccarii occur dominantly in the surface sediments and downcore. Elphidium spp. (either pyritized or non-pyritized) do not occur in the surface sediments of whole stations. However, they occur from the entire downcore sediments except in the eastern part of Shihwa Lake. Arenaceous foraminifera do not inhabit in the heavily polluted areas as evidenced by the occurrence of relatively deep core depth (11-50 cm). Ostracodes occur at the downcore sediments, but they do not occur at the surface sediments. Ostracodes also do not occur at the heavily polluted areas in the eastern part of the Shihwa Lake both at the surface and downcore sediments, indicating that the abundance of ostracodes also can be used for a pollution indicator.

  • PDF

Spatial and Temporal Variations of Foraminifers as an Indicator of marine Pollution

  • Shin, Im-Chul;Yi, Hi-Il
    • International Union of Geodesy and Geophysics Korean Journal of Geophysical Research
    • /
    • v.26 no.1
    • /
    • pp.59-73
    • /
    • 1998
  • Sediment samples from five stations at the Shihwa Lake sewage outfall, west cost of Korea, were collected to evaluate the effect of the outfall on benthic foraminifers. Heavy metal (Cu and Zn) polluted the eastern part of the Shihwa Lake, adjacent to the Shihwa-Banwol Industrial Complexes, shows barren or nearly barren of benthic foraminifers, and the lowest number of species both at the core top and downcore. Excepting for the barren zone, pyritized benthic foraminifers abundantly occur both at the surface and downcore sediments in the western part of the Shihwa Lake, suggesting that foraminiferal disease by anoxic bacteria. Recent intrusion of pollutants form the Shihwa-Banwol Industrial Complexes and adjacent six major streams severely polluted the Shihwa Lake as shown by the low abundance (number/10 g) of benthic foraminifers, low number of Ammonia beccarii, low species diversity, and absence of both Elphidium spp. and ostracodes at the surface sediments compared of both downcore. Except the barren zone, both pyritized and non-pyritized Ammonia beccarii occur dominantly in the surface sediments and downcore. Elphidium spp. (either pyritized or non-phyritized) do not occur in the surface sediments of whole stations. However, they occur from the entire downcore sediments except in the eastern part of Shihwa Lake. Arenaceous foraminifers do not inhabit in the heavily polluted areas as evidenced by the occurrence of relatively deep core depth (11-15 cm). Ostracodes occur at the downcore sediments, but they do not occur at the surface sediments. Ostracodes also do not occur at the heavily polluted areas in the eastern part of the Shihwa Lake both at the surface and downcore sediments, indicating that the abundance of ostracodes also can be used for a pollution indicator.

  • PDF

Changes of Tissue N Content and Community Structure of Macroalgae on Intertidal Rocky Shores in Tongyeong Area due to Sewage Discharge (통영 지역의 암반 조간대에서 배출수 유입으로 인한 해조 군집 구조와 엽체 내 질소 함량의 변화)

  • Kang, Yun-Hee;Park, Sang-Rul;Oak, Jung-Hyun;Lee, Jin-Ae;Chung, Ik-Kyo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.42 no.3
    • /
    • pp.276-283
    • /
    • 2009
  • Enrichment in nutrients coming from urban sewage outfalls can lead to eutrophication in coastal areas, which can also change the species composition and community structure of macro algal communities. We investigated the structure of the macro algal community within three rocky shores in order to assess any possible differences in their characteristics. Site 1 was located near Tongyeong city's sewage outfall, Site 2 was located near a public beach area, and Site 3 faced open channel of the Ocean. All three sites were located within the same stretch of the coast, where Site 2 was located between sites 1 and 3. We measured the nutrient concentration in water and the tissue nitrogen content in macro algae samples. Nutrients in the water column surrounding site 1 were high in ammonium ($30.2\pm1.8{\mu}M$), nitrate ($26.2{\pm}0.1{\mu}M$), and phosphate ($2.7{\pm}0.1{\mu}M$) content, and were characterized by low numbers of macroalgal species and species and a low species diversity index. In contrast, site 3 exhibited relatively low nutrient concentration levels and a high number of macroalgal species and a high species diversity index. Comparative analysis showed that the tissue nitrogen content of macroalgae were significantly (P<0.05) affected by the nutrient concentration in the water column. The tissue nitrogen content of green algae within site 1 was higher than the others sites. However, the tissue nitrogen content of brown algae was similar at all three sites. Thus, the tissue nitrogen content of macro algae and the macro algal community structure of intertidal rocky shores were dependent on location and the performance of macroalgal communities was dependent on water quality.