• Title/Summary/Keyword: severity of accident

Search Result 317, Processing Time 0.028 seconds

Collision Configurations Reconstruction Using Deformation Shape and Deformation Severity of Car Body (차체의 변형상과 변형정도에 의한 자동차 충돌상황의 재구성)

  • 장인식;채덕병
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.1
    • /
    • pp.171-180
    • /
    • 2001
  • Collision accident reconstruction algorithm are developed based on the deformation shape and severity of a car body. At first, the body stiffness equation representing the force-deformation relationship is derived using finite element analysis for head on collision of two cars. The database of deformation shapes and energies is constructed for five different collision configurations; each configuration contains three velocity conditions. Deformation shapes are obtained using a curve fitting method and result in cubic polynomials. Deformation energies are calculated using a stiffness equation and deformation data. Three algorithms are developed to reconstruct collision configuration compared with constructed database. The developed algorithms show reasonably good performance to find collisions conditions for some test problems.

  • PDF

The Effect that Air Bag Deployment in Car Head-on Collision on Injury to Driver (승용차 정면충돌에서 에어백 전개가 운전자 손상에 미치는 영향)

  • Jeon, Hyeok-Jin;Kim, Sang-Chul;Lee, Kang-Hyun
    • Journal of Auto-vehicle Safety Association
    • /
    • v.10 no.2
    • /
    • pp.13-19
    • /
    • 2018
  • The purpose of this study was to evaluate the effect of air bag deployment in passenger car head-on collisions on injuries to the driver. The drivers in head-on collisions who were brought to the emergency rooms of two hospitals from January 2011 and October 2014 were evaluated, as were the vehicles involved. The driver injury level were assessed by utilizing Collision Deformation Classification (CDC) codes, and the Abbreviated Injury Scale (AIS) and Injury Severity Score (ISS), respectively. In this study, it was shown that the chest ISS and AIS were significantly high when an air bag only is deployed. A statistically significant difference was found in the crush extent when the driver who fastened the seatbelt was found to be affected more than the ISS 9. Even when an air bag is deployed in a head-on car collision, injury severity can vary according to accident circumstances and crash severity. Accordingly, first aid can be rapidly given, and the injured person can be quickly referred to a hospital, only if the assessment of persons involved in a vehicle accident is accurately carried out.

A Risk Assessment Method using Disaster Influence Factors on Construction Project (건설 프로젝트의 재해영향요인 기반 위험성 평가방법)

  • Yu, Yong-Sin;Choi, Jae-Wook;Kim, Tae-Wan;Lee, Chansik
    • Journal of the Architectural Institute of Korea Planning & Design
    • /
    • v.35 no.6
    • /
    • pp.3-12
    • /
    • 2019
  • Current risk assessment methods typically determine accident risks embedded in construction projects by combining severity and frequency; however, they do not reflect the characteristics of construction projects. To solve the problem, this study aims to develop a novel risk assessment method that combines severity, frequency, and disaster influence factors (i.e., weather conditions and worker's characteristics) for assessing risks of activities occurring on a construction site actually. In this study, a severity was estimated by death against victims, and a frequency was estimated by the victim rate. The frequency was then converted to probability taking disaster influence factors into account. Thus, instead of considering severity and frequency for assessing the original risks (RO), the proposed method uses severity and probability to yield adjusted risks (RA) for each activity. A case study was conducted to determine if the proposed method works as intended in a real setting. The results show that RA is more sensitive to disaster influence factors than RO and, therefore, is able to assess the actual risks reflecting the working environment and conditions of a construction site. This study contributes to risk management of construction projects by offering a risk assessment method that measures a possibility of potential disasters from the probabilistic perspective. This method would help project managers assess accident risks in a more systematic and quantitative manner.

Effects of Weather and Traffic Conditions on Truck Accident Severity on Freeways (기상 및 교통조건이 고속도로 화물차 사고 심각도에 미치는 영향분석)

  • Choi, Saerona;Kim, Mijoeng;Oh, Cheol;Lee, Keeyong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.3
    • /
    • pp.1105-1113
    • /
    • 2013
  • Understanding the characteristics of truck-involved crashes is of keen interest because such crashes are highly associated with greater potential leading to severer injury. The purpose of this study is to identify factors affecting injury severity of truck-involved crashes on freeways. In addition, a binary logistic regression technique is applied to identify causal factors affecting truck crash severity under normal and adverse weather conditions. Major findings from the analyses are discussed with truck operations strategies including speed enforcement, variable speed limit, and truck lane restriction, from the safety enhancement point of view. The results of this study would be useful for developing traffic control and operations strategies to reduce truck-involved crashes and injury severity in practice.

The Relationship between Violation of Designated Lane Usage and Accident Severity on Freeways (고속도로 지정차로제 위반과 교통사고 심각도와의 관계분석: 화물차량을 대상으로)

  • Kim, Joo-Hee;Lee, Soo-Beom;Kim, Da-Hee;Hong, Ji-Yeon
    • Journal of Korean Society of Transportation
    • /
    • v.30 no.3
    • /
    • pp.119-127
    • /
    • 2012
  • For traffic safety, it is imperative for motorists to secure their clear view and to maintain a similar speed with others while driving in a lane. Large-sized vehicles at lower speeds, however, are likely to increase the risk of accident when they share a lane with cars. Although to overcome this complication the Korean Road Traffic Act established rules for the safe use of roads, the reality is that the rules are seldom observed strictly. In this light, this study was designed to analyze the severity of truck-involved accidents, thereby providing justification for the need of truck-designated lanes and thus contributing to measuring road safety more precisely. A binomial logistic regression model was applied to analyze the severity of truck-involved accidents. The analysis showed that several variables affect the severity of truck-involved accidents on freeways; i.e., violation against the rule of truck-designated lanes, weather, difference between daytime and nighttime, and parking on road shoulder. Moreover, the strong enforcement will be needed to make motorists observe the rule, because a Wald statistical test showed that the violation against the rule of truck-designated lanes has the largest influence on the severity.

The Effects of Road Geometry on the Injury Severity of Expressway Traffic Accident Depending on Weather Conditions (도로기하구조가 기상상태에 따라 고속도로 교통사고 심각도에 미치는 영향 분석)

  • Park, Su Jin;Kho, Seung-Young;Park, Ho-Chul
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.18 no.2
    • /
    • pp.12-28
    • /
    • 2019
  • Road geometry is one of the many factors that cause crashes, but the effect on traffic accident depends on weather conditions even under the same road geometry. This study identifies the variables affecting the crash severity by matching the highway accident data and weather data for 14 years from 2001 to 2014. A hierarchical ordered Logit model is used to reflect the effects of road geometry and weather condition interactions on crash severity, as well as the correlation between individual crashes in a region. Among the hierarchical models, we apply a random intercept model including interaction variables between road geometry and weather condition and a random coefficient model including regional weather characteristics as upper-level variables. As a result, it is confirmed that the effects of toll, ramp, downhill slope of 3% or more, and concrete barrier on the crash severity vary depending on weather conditions. It also shows that the combined effects of road geometry and weather conditions may not be linear depending on rainfall or snowfall levels. Finally, we suggest safety improvement measures based on the results of this study, which are expected to reduce the severity of traffic accidents in the future.

Analysis of Factors influencing Severity of Motorcycle Accidents using Ordered Probit Model (순서형 프로빗모형에 의한 이륜차 사고심각도의 영향요인 분석)

  • Choi, Jung Woo;Kum, Ki Jung
    • International Journal of Highway Engineering
    • /
    • v.16 no.5
    • /
    • pp.143-154
    • /
    • 2014
  • PURPOSES : This study drew factors affecting motorcycle accidents in Seoul by severity using an ordered probit model and aimed to analyze and verify the drawn influence factors. METHODS : As the severity of the accidents could be classified into three types (fatal injury, serious injury and minor injury), this study drew the factors affecting accidents by a comparative analysis employing an ordered probit model, removed the variables that would not secure significance sequentially to construct a model with high explanatory power regarding the factors affecting the severity of motorcycle accidents, and calculated the marginal effect of each factor to understand the degree of each factor's impact on the severity. First, Model 1 put in all variables; Model 2 was constructed by removing the variables of the road surface conditions that could not meet the level of significance (p=0.608); Model 3 was constructed by removing gender variable (p=0.423); and Model 4 was constructed finally by removing age variable (p=0.320). RESULTS : As a result of an analysis, statistically significant variables were time of occurrence, type of accident, road alignment and motorcycle displacement, and it turned out that the impacts on the severity were in the following order: a road alignment of left downhill, the type of motorcycle-to-vehicle accidents and a road alignment of a flatland on the left. The significance of the models was tested using the likelihood ratio, the level of significance and suitability statistics about them, and as a result of the test, the significance level and suitability of the constructed models were all excellent. In addition, the model accuracy indicating the accuracy of a predicted value compared to that of the value actually observed was 70.3% for minor injury; 70.1% for serious injury; and 68.6% for fatal injury, and the overall accuracy was 70.2%, which was very high. CONCLUSIONS : As a result of an analysis of motorcycle accidents in Seoul through the ordered probit model and the marginal effect, it turned out that their severity increased in nighttime accidents as compared to daytime ones and gradually increased in the order of motorcycle-to-vehicle accidents, motorcycle-to-person ones and the ones involving motorcycle only. As a result of an analysis, the severity of accidents in road alignments of left downhill, left flatland and straight downhill increased as compared to those in a road alignment of straight flatland and that the severity of accidents of motorcycles with a displacement larger than 50cc was higher than that of those with a displacement smaller than 50cc.

A Study on Industrial Accident Cases by an Application of Correlation Analysis (상관분석을 응용한 산업재해 사례요인의 고찰)

  • 정국삼;홍광수
    • Journal of the Korean Society of Safety
    • /
    • v.14 no.1
    • /
    • pp.141-149
    • /
    • 1999
  • At present time, industrial accidents statistics are used as the basic data of the policy to prevent industrial accidents and the plan to applicate the industrial accident insurance. But this statistical data is not sufficient for the effective safety management because it is the expression of the itemized distribution and the frequency for the whole cases. This study tried to correlational analysis for each causes by defining investigational items as their accident parameters. The correlational analysis, between the unsafe action and status and their relational causes, was performed to analyze the occurrence causes of industrial accident. And to assume the severity of accident, the correlativity and independency between causes and direct causes which are defined hospital days subordinate parameter were analyzed. In addition, this study expressed numerically the effectiveness of subordinate parameters depended on the level of independent parameter by presenting the predictive model between dependent parameter and independent parameter, which have the categorical parameter, through the Logit analysis method.

  • PDF

Developing the Traffic Accident Severity Models by Accident Type (사고유형에 따른 교통사고 심각도 모형 개발)

  • Kim, Kyung-Hwan;Park, Byung-Ho
    • Journal of the Korean Society of Safety
    • /
    • v.26 no.6
    • /
    • pp.118-123
    • /
    • 2011
  • This study deals with the traffic accidents of the arterial link sections. The purpose is to comparatively analyze the characteristics and models by accident type using the data of 24 arterial links in Cheongju. In pursuing the above, this study gives particular emphasis to modeling such the accidents as the side-right-angle collision, rear-end collision and side-swipe collision. The main results are the followings. First, six accident models are developed, which are all analyzed to be statistically significant. Second, the models are comparatively evaluated using the common and specific variables by accident type.