• Title/Summary/Keyword: severe earthquakes

Search Result 163, Processing Time 0.021 seconds

Earthquake Damage Assessment of Buildings Using Opendata in the Pohang and the Gyeongju Earthquakes (Opendata 기반 포항 및 경주지진에 의한 건물손상 평가)

  • Eem, Seung-Hyun;Yang, Beomjoo;Jeon, Haemin
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.22 no.3
    • /
    • pp.121-128
    • /
    • 2018
  • Severe earthquakes can cause damage to society both socially and economically. An appropriate initial response can alleviate damage from severe earthquakes. In order to formulate an appropriate initial response, it is necessary to identify damage situations in societies; however, it is difficult to grasp this information immediately after an earthquake event. In this study, an earthquake damage assessment methodology for buildings is proposed for estimating damage situations immediately after severe earthquakes. A response spectrum database is constructed to provide response spectra at arbitrary locations from earthquake measurements immediately after the event. The fragility curves are used to estimate the damage of the buildings. Earthquake damage assessment is performed from the response spectrum database at the building scale to provide enhanced damage condition information. Earthquake damage assessment for Gyeongju city and Pohang city were conducted using the proposed methodology, when an earthquake occurred on September 12, 2016, and November 15, 2017. Results confirm that the proposed earthquake damage assessment effectively represented the earthquake damage situation in the city to decide on an appropriate initial response by providing detailed information at the building scale.

Experimental and numerical study on the collapse failure of long-span transmission tower-line systems subjected to extremely severe earthquakes

  • Tian, Li;Fu, Zhaoyang;Pan, Haiyang;Ma, Ruisheng;Liu, Yuping
    • Earthquakes and Structures
    • /
    • v.16 no.5
    • /
    • pp.513-522
    • /
    • 2019
  • A long-span transmission tower-line system is indispensable for long-distance electricity transmission across a large river or valley; hence, the failure of this system, especially the collapse of the supporting towers, has serious impacts on power grids. To ensure the safety and reliability of transmission systems, this study experimentally and numerically investigates the collapse failure of a 220 kV long-span transmission tower-line system subjected to severe earthquakes. A 1:20 scale model of a transmission tower-line system is constructed in this research, and shaking table tests are carried out. Furthermore, numerical studies are conducted in ABAQUS by using the Tian-Ma-Qu material model, the results of which are compared with the experimental findings. Good agreement is found between the experimental and numerical results, showing that the numerical simulation based on the Tian-Ma-Qu material model is able to predict the weak points and collapse process of the long-span transmission tower-line system. The failure of diagonal members at weak points constitutes the collapse-inducing factor, and the ultimate capacity and weakest segment vary with different seismic wave excitations. This research can further enrich the database for the seismic performance of long-span transmission tower-line systems.

A COMPARATIVE STUDY OF 1819,1844 AND 2001 EARTHQUAKES IN GUJARAT

  • Rathore, Narpat Singh;Verma, Narender
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.366-368
    • /
    • 2003
  • The Rann of Kachchh in Gujarat in the Western part of India is seismically the most active area outside Himalayan Belt. Several severe earthquakes of which the 1819 Rann of Kachchh and 2001 Bhuj Earthquakes are the severest recorded have rocked the region. This paper is an attempt to make a comparative study of the 1819,1844 and 2001 earthquakes. The study of 1819 and 1944 earthquakes is based on secondary accounts while 2001 Bhuj earthquake is based on remote Sensing. From a comparative study of the three earthquakes many interesting conclusions can be drawn. These earthquakes have been the result of accumulation of stress caused due to the collision of Indian Plate with the Eurasian Plate, which is continuously moving northwards. The earthquakes have been felt over large part of the Indian Sub-continent. These have resulted in creation of several faults that have activated periodically. Prominent of them are the Allah Bund Fault, Manfara Fault and Budharmora Fault. These are strike slip faults that get periodically activated. In future too these faults are going to be the most vulnerable to any seismic activity with the probability of high intensity earthquakes occurring along them in future too.

  • PDF

Rubber bearing isolation for structures prone to earthquake - a cost effectiveness analysis

  • Islam, A.B.M. Saiful;Sodangi, Mahmoud
    • Earthquakes and Structures
    • /
    • v.19 no.4
    • /
    • pp.261-272
    • /
    • 2020
  • Recent severe earthquakes in and around the vital public places worldwide indicate the severe vulnerability of ground excitation to be assailed. Reducing the effect of seismic lateral load in structural design is an important conception. Essentially, seismic isolation is required to shield the superstructure in such a way that the building superstructure would not move when the ground is shaking. This study explores the effectiveness, design, and practical feasibility of base isolation systems to reduce seismic demands on buildings of varying elevations. Thus, static and dynamic analyses were conducted based on site-specific bi-directional earthquakes for base-isolated as well as fixed-based buildings. Remarkably, it was discovered that isolators used in low-rise to high-rise structures tend to significantly decrease the structural responses of seismic prone buildings. The higher allowable horizontal displacement induces structural flexibility and ensure good structural health of the building stories. Reinforcement from vertical and horizontal members can be reduced in significant amounts for BI buildings. Thus, although incorporating base isolators increases the initial outlay, it considerably diminishes the total structural cost.

On the wind and earthquake response of reinforced concrete chimneys

  • Turkeli, Erdem;Karaca, Zeki;Ozturk, Hasan Tahsin
    • Earthquakes and Structures
    • /
    • v.12 no.5
    • /
    • pp.559-567
    • /
    • 2017
  • Slender structures like reinforced concrete (RC) chimneys are severely damaged or collapsed during severe wind storms or strong ground motions all over the world. Today, with the improvement in technology and industry, most factories need these slender structures with increasing height and decreasing in shell thickness causing vulnerable to winds and earthquakes. Main objectives in this study are to make structural wind and earthquake analysis of RC chimneys by using a well-known international standard CICIND 2001 and real recorded time history accelerations and to clarify weak points of these tall and slender structures against these severe natural actions. Findings of this study show that maximum tensile stress and shear stress approximately increase 103.90% and 312.77% over or near the openings on the body of the RC chimneys that cause brittle failure around this region of openings.

The Capacity Design Method towards Improving Seismic Perfor mance of Gravity-Load Designed R/C Frames (내진역량설계법(Capacity Design Method)을 이용한 비내진설계 R/C 골조의 내진 성능 향상기법)

  • 조봉호
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1997.10a
    • /
    • pp.209-216
    • /
    • 1997
  • The seismic performance of R/C frame structure designed for gravity load investigated in this paper. The investigation shows a satisfactory seismic performance against moderate earthquakes but column sway failure mechanism against severe earthquakes. Capacity design method is employed to redesign the R/C frame to improve seismic performance. This study provides an insight an insight into seismic upgrading methodology for medium rise R/C frame structures designed gravity load.

  • PDF

Seismic effectiveness of tuned mass dampers in a life-cycle cost perspective

  • Matta, Emiliano
    • Earthquakes and Structures
    • /
    • v.9 no.1
    • /
    • pp.73-91
    • /
    • 2015
  • The effectiveness of tuned mass dampers (TMDs) in reducing the seismic response of civil structures is still a debated issue. The few studies regarding TMDs on inelastic structures indicate that they would perform well under moderate earthquake loading, when the structure remains linear or weakly nonlinear, while tending to fail under severe ground shaking, when the structure experiences strong nonlinearities. TMD seismic efficiency should be therefore rationally assessed by considering to which extent moderate and severe earthquakes respectively contribute to the expected cost of damages and losses over the lifespan of the structure. In this paper, a method for evaluating, in a life-cycle cost (LCC) perspective, the seismic effectiveness of TMDs on inelastic building structures is presented and exemplified on the SAC LA 9-storey steel moment-resisting frame benchmark building. Results show that the LCC concept may provide an appropriate alternative to traditional performance criteria for the evaluation of the effectiveness of TMDs and that TMD installation on typical existing middle-rise buildings in high seismic hazard regions may significantly reduce building lifetime cost despite the poor control performance observed under the most severe seismic events.

Probabilistic seismic assessment of mega buckling-restrained braced frames under near-fault ground motions

  • Veismoradi, Sajad;Darvishan, Ehsan
    • Earthquakes and Structures
    • /
    • v.15 no.5
    • /
    • pp.487-498
    • /
    • 2018
  • Buckling-restrained braces are passive control devices with high level of energy dissipation ability. However, they suffer from low post-yield stiffness which makes them vulnerable to severe ground motions, especially near-field earthquakes. Among the several methods proposed to improve resistance of BRB frames, mega-brace configuration can be a solution to increase frame lateral strength and stiffness and improve distribution of forces to prevent large displacement in braces. Due to the limited number of research regarding the performance of such systems, the current paper aims to assess seismic performance of BRB frames with mega-bracing arrangement under near-field earthquakes via a detailed probabilistic framework. For this purpose, a group of multi-story mega-BRB frames were modelled by OpenSEES software platform. In the first part of the paper, simplified procedures including nonlinear pushover and Incremental Dynamic Analysis were conducted for performance evaluation. Two groups of near-fault seismic ground motions (Non-pulse and Pulse-like records) were considered for analyses to take into account the effects of record-to-record uncertainties, as well as forward directivity on the results. In the second part, seismic reliability analyses are conducted in the context of performance based earthquake engineering. Two widely-known EDP-based and IM-based probabilistic frameworks are employed to estimate collapse potential of the structures. Results show that all the structures can successfully tolerate near-field earthquakes with a high level of confidence level. Therefore, mega-bracing configuration can be an effective alternative to conventional BRB bracing to withstand near-field earthquakes.

Study on Seismic Resistant Safety of Seismic Isolation Design for Bridge using L.R.B. (L.R.B.를 이용한 면진설계의 내지진 안전성 연구)

  • Lee, Chol-Hee;Shin, Jae-In
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.6 no.2
    • /
    • pp.121-126
    • /
    • 2002
  • Due to few earthquakes in our country, one generally has thought to be safe from earthquakes. However, severe earthquakes occurred in Dangsan and Hyogohyeon which one had regarded as the zone that had not been risky for earthquakes, so that so many people died and a lot of buildings and bridges were destroyed. This event surprised our country and we undertook preparation for earthquakes on the full scale. The concept of seismic design was induced in the country which was poor in it for the scarcity of recognition and insufficiency of funds. Recently, many specialists are enforcing the provisions of seismic design. Therefore, this study introduces the method which combines PC-LEADeR( design program for L.R.B.) with LUSAS(linear elastic analysis) and performs the seismic isolation design more elaborately and simply. It verifies the propriety of that method, and it also examine the factors that affect the response of the bridges. Seismic isolation design for bridge using L.R.B. provides both economical efficiency and superior seismic performance. Second, the results between by the method proposed and by time history analysis have 20% error at the maximum. That is, the method proposed very appropriate.

Seismic Risk Assessment of Existing Low-rise Reinforced Concrete Buildings in Korea

  • LEE, Kang Seok;Jung, Ju-Seong;Choi, Yun-Chul
    • Architectural research
    • /
    • v.20 no.1
    • /
    • pp.17-25
    • /
    • 2018
  • Countermeasures against earthquake disasters such as the seismic capacity evaluation and/or retrofit schemes of buildings, especially existing low-rise reinforced concrete buildings, have not been fully performed since Korea had not experienced many destructive earthquakes in the past. However, due to more than 1200 earthquakes with low or moderate intensity in the off-coastal and inland of Korea during the past 20 years, and due to the recent moderate earthquakes in Korea, such as the 2016 Gyeongju Earthquake with M=5.8 and the 2017 Pohang Earthquake with M=5.4, the importance of the future earthquake preparedness measures is highly recognized in Korea. The main objective of this study is to provide the basic information regarding seismic capacities of existing low-rise reinforced concrete buildings in Korea. In this paper, seismic capacities of 14 existing low-rise reinforced concrete public buildings in Korea are evaluated based on the Japanese Standard for Evaluation of Seismic Capacity of Existing Reinforced Concrete Buildings. Seismic capacities between existing buildings in Korea and those in Japan is compared, and the relationship of seismic vulnerability of Korean buildings and Japanese buildings damaged due to severe earthquakes are also discussed. Results indicated that Korean existing low-rise reinforced concrete buildings have a narrow distribution of seismic capacities and they are relatively lower than Japanese buildings, and are also expected to have severe damage under the earthquake intensity level experienced in Japan. It should be noted from the research results that the high ductility in Korean existing low-rise buildings obtained from the Japanese Standard may be overestimated, because most buildings investigated herein have the hoop spacing wider than 30 cm. In the future, the modification of strength and ductility indices in the Japanese Standard to propose the seismic capacity evaluation method of Korean buildings is most needed.