• 제목/요약/키워드: settlement condition

검색결과 425건 처리시간 0.024초

점증 재하를 고려한 선행재하 공법 적용 연약지반의 현장 계측을 통한 침하량 예측 방법의 개발 (Prediction Method of Settlement Based on Field Monitoring Data for Soft Ground Under Preloading Improvement with Ramp Loading)

  • 우상인;윤찬영;백승경;정충기
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2008년도 춘계 학술발표회 초청강연 및 논문집
    • /
    • pp.452-461
    • /
    • 2008
  • Previous settlement prediction method based on settlement monitoring such as hyperbolic, monden method were developed under instantaneous loading condition and have restriction to be applied to soft ground under ramp loading condition. In this study, settlement prediction method under ramp loading was developed. New settlement prediction method under ramp loading considers influence factors of consolidation settlement and increase accuracy of settlement prediction using field monitoring data after ramp loading. Large consolidation tests for ideally controlled one dimensional consolidation under ramp loading condition were performed and the settlement behavior was predicted based on the monitoring data. As a result, new prediction method is expected to have great applicability and practicability for the prediction of settlement behavior.

  • PDF

터널굴착으로 발생한 지반거동에 대한 수치해석적 분석 (Numerical Analysis of Tunnelling-Induced Ground Movements)

  • 손무락;윤종철
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2009년도 세계 도시지반공학 심포지엄
    • /
    • pp.396-403
    • /
    • 2009
  • Numerical analysis has been performed to estimate maximum settlement and maximum horizontal displacement due to tunnel excavation varying ground condition, tunnel depth and diameter, and construction condition (volume loss at excavation face). The maximum surface settlement from the numerical analysis has been compared with the maximum settlement at tunnel crown considering ground condition, tunnel depth and diameter, and construction condition, and it has been also compared with the maximum horizontal displacement. The results from the numerical analysis have been compared with field measurements to confirm the applicability and validity of the results and by this comparison it is believed that the numerical results in this study can be utilized practically in analyzing the ground movements due to tunnel excavation.

  • PDF

천층터널 쉴드TBM에서 역해석을 이용한 Gap Parameter 및 지표침하 영향범위에 대한 연구 (A study on Gap Parameter and Influence Area of Ground Settlement Using Back Analysis Constructed by Shield TBM with Shallow Depth)

  • 고성일;권성주;황창희;김상인;추석연
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2011년도 춘계학술대회 논문집
    • /
    • pp.1509-1518
    • /
    • 2011
  • Shield TBM tunneling method has been getting the spotlight for urban tunneling. It can be minimized the civil complaint during construction and possible safe tunneling. But the settlement has occurred inevitably due to characteristics of shield TBM equipment. For this reason, the civil complaint can occur in urban areas when tunnel with shallow depth passes through neighboring building or residential area. In this study, the occurrence factors of settlement according to shield TBM tunneling and the tendency of ground settlement by strata condition had analyzed. It is suggested that the practical settlement estimation method and minimizing method of ground settlement under simultaneous backfill grouting condition through measurement results and back analysis data using gap parameter.

  • PDF

Experimental investigation of earth pressure on retaining wall and ground settlement subjected to tunneling in confined space

  • Jinyuan Wang;Wenjun Li;Rui Rui;Yuxin Zhai;Qing He
    • Geomechanics and Engineering
    • /
    • 제32권2호
    • /
    • pp.179-191
    • /
    • 2023
  • To study the influences of tunneling on the earth pressure and ground settlement when the tunnel passes through the adjacent underground retaining structure, 30 two-dimensional model tests were carried out taking into account the ratios of tunnel excavation depth (H) to lateral width (w), excavation width (B), and excavation distance using a custom-made test device and an analogical soil. Tunnel crossing adjacent existing retaining structure (TCE) and tunnel crossing adjacent newly-built retaining structure (TCN) were simulated and the earth pressure variations and ground settlement distribution during excavation were analyzed. For TCE condition, the earth pressure increments, maximum ground settlement and the curvature of the ground settlement curve are negatively related to H/B, but positively related to H/s and H/w. For TCN condition, most trends are consistent with TCE except that the earth pressure increments and the curvature of ground settlement curve are negatively related to H/w. The maximum ground settlement is larger than that observed in tunnel crossing the existing underground structure. This study provides an assessment basis for the design and construction under confined space conditions.

터널굴착으로 발생한 지반거동에 대한 수치해석적 분석 (Numerical analysis of tunnelling-induced ground movements)

  • 손무락;윤종철
    • 한국터널지하공간학회 논문집
    • /
    • 제11권3호
    • /
    • pp.229-242
    • /
    • 2009
  • 본 논문에서는 터널굴착으로 발생한 지표면에서의 최대 침하 및 수평변위와 총 침하부피량을 추정하기 위하여 서로 상이한 지층에서 다양한 깊이 및 직경, 서로 다른 시공조건(지반손실량)을 가진 터널에 대해 수치해석을 수행하였다. 수치해석 결과로부터 얻어진 지표면에서의 최대 침하량은 터널 굴착부 천단에서의 최대 침하량과 지층별, 터널직경 및 깊이, 시공조건(지반손실량)별로 비교되었으며, 또한 지표면에서의 최대 침하량은 지표면에서의 최대 수평변위량과도 비교하였다. 뿐만 아니라, 터널굴착부에서 발생한 지반손실량($V_L$)과 지표면에서 형성된 총 침하부피량($V_s$)을 지층 및 터널깊이와 직경을 달리하여 상호 비교하였다. 수치해석을 통해 얻어진 결과는 그 적용성과 타당성을 검증하기 위하여 기존 현장계측자료와의 비교가 수행되었으며, 이를 통해 본 연구의 수치해석 결과가 향후 터널굴착으로 발생된 주변 지반의 거동을 파악하고 분석하는 실무자료로서 활용될 수 있다는 것을 파악하였다.

Analysis of pile group behaviour to adjacent tunnelling considering ground reinforcement conditions with assessment of stability of superstructures

  • Young-Jin Jeon;Cheol-Ju Lee
    • Geomechanics and Engineering
    • /
    • 제33권5호
    • /
    • pp.463-475
    • /
    • 2023
  • Tunnel construction activity, conducted mainly in mountains and within urban centres, causes soil settlement, thus requiring the relevant management of slopes and structures as well as evaluations of risk and stability. Accordingly, in this study we performed a three-dimensional finite element analysis to examine the behaviour of piles and pile cap stability when a tunnel passes near the bottom of the foundation of a pile group connected by a pile cap. We examined the results via numerical analysis considering different conditions for reinforcement of the ground between the tunnel and the pile foundation. The numerical analysis assessed the angular distortion of the pile cap, pile settlement, axial force, shear stress, relative displacement, and volume loss due to tunnel excavation, and pile cap stability was evaluated based on Son and Cording's evaluation criterion for damage to adjacent structures. The pile located closest to the tunnel under the condition of no ground reinforcement exhibited pile head settlement approximately 70% greater than that of the pile located farthest from the tunnel under the condition of greatest ground reinforcement. Additionally, pile head settlement was greatest when the largest volume loss occurred, being approximately 18% greater than pile head settlement under the condition having the smallest volume loss. This paper closely examines the main factors influencing the behaviour of a pile group connected by a pile cap for three ground reinforcement conditions and presents an evaluation of pile cap stability.

지반-보강재 상호작용에 의한 매설관의 부등침하 억제효과 (Soil-Reinforcement Interaction to Restrain Differential Settlement of Buried Pipeline)

  • 손준익;정하익
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1991년도 봄 학술발표회 논문집
    • /
    • pp.29-33
    • /
    • 1991
  • This paper reports the application study of the ground reinforement under a buried pipeline subjected to differential settlement via a finite element modelling. The Soil-reinforrement interaction helps to mimimize the differential settlement between the adjoining pipe segments. The settlement pattern and deformation slope of a pipeline have been evaluated for a boundary condition at the joint between a rigid structure and apipeline. The analysis results are compared for both non-reinforied and reinforced cases to measure the effectiveness of the soil reinforcement for restraining the settlement of the pipeline.

  • PDF

Prediction of transverse settlement trough considering the combined effects of excavation and groundwater depression

  • Kim, Jonguk;Kim, Jungjoo;Lee, Jaekook;Yoo, Hankyu
    • Geomechanics and Engineering
    • /
    • 제15권3호
    • /
    • pp.851-859
    • /
    • 2018
  • There are two primary causes of the ground movement due to tunnelling in urban areas; firstly the lost ground and secondly the groundwater depression during construction. The groundwater depression was usually not considered as a cause of settlement in previous research works. The main purpose of this study is to analyze the combined effect of these two phenomena on the transverse settlement trough. Centrifuge model tests and numerical analysis were primarily selected as the methodology. The characteristics of settlement trough were analyzed by performing centrifuge model tests where acceleration reached up to 80g condition. Two different types of tunnel models of 180 mm diameter were prepared in order to match the prototype of a large tunnel of 14.4 m diameter. A volume loss model was made to simulate the excavation procedure at different volume loss and a drainage tunnel model was made to simulate the reduction in pore pressure distribution. Numerical analysis was performed using FLAC 2D program in order to analyze the effects of various groundwater depression values on the settlement trough. Unconfined fluid flow condition was selected to develop the phreatic surface and groundwater level on the surface. The settlement troughs obtained in the results were investigated according to the combined effect of excavation and groundwater depression. Subsequently, a new curve is suggested to consider elastic settlement in the modified Gaussian curve. The results show that the effects of groundwater depression are considerable as the settlement trough gets deeper and wider compared to the trough obtained only due to excavation. The relationships of maximum settlement and infection point with the reduced pore pressure at tunnel centerline are also suggested.

Suction 연직배수 공법과 PDB 공법의 변위거동 차이에 대한 유한 요소 해석 (Finite element analysis for the difference of displacement behavior developed from suction drain method and vertical drain method)

  • 김기년;안동욱;한상재;정승용;김수삼
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2006년도 춘계 학술발표회 논문집
    • /
    • pp.1165-1172
    • /
    • 2006
  • In this study, an aspect of settlement, developed from different ground improvement method like suction drain method using vacuum pressure and vertical drain method using overburden pressure, was compared each other. In order to analyze settlement tendency of each method exactly, the finite element analysis program was used. The analyses of vertical settlement and lateral displacement for suction drain method and vertical drain method were conducted independently during the solving stage. The initial condition of drainage zone was fixed with 25m depth and 21m width. After the program analyses, the settlement condition had a different tendency with the ground improvement method. Especially, in the results of vertical drain method, the disparity of settlement between the middle of improved zone and unimproved zone. In the case of suction drain method, however, the difference of settlement was smaller than that of vertical drain method.

  • PDF

점증 선행 하중으로 개량하는 연약지반의 계측기반 침하량 예측방법 개발 (Prediction Method of Settlement Based on Field Monitoring Data for Soft Ground Under Preloading Improvement with Ramp Loading)

  • 우상인;윤찬영;백승경;정충기
    • 한국지반공학회논문집
    • /
    • 제24권10호
    • /
    • pp.83-91
    • /
    • 2008
  • 현장계측 자료를 이용하여 연약지반의 향후 침하거동을 예측하는 기존의 방법들은 모두 즉시재하 조건을 가정하고 개발된 방법으로써 실제로는 연약지반의 안정성 등을 고려하여 점증재하가 이루어지는 현장에 적용하기에는 많은 제약이 있다. 본 연구에서는 연약층의 두께, 성토하중 크기, 선행압밀하중, 배수거리, 성토속도 등의 다양한 영향인자를 고려하였으며 점증재하가 완료된 이후의 지반개량 기간에도 지속적으로 예측 정확도를 높일 수 있는 계측기반 침하거동 예측기법을 개발하였다. 점증재하 과정에서의 예측방법과 성토완료 이후의 예측방법이 개발되었으며, 성토 완료 이후의 예측방법은 기하학적 보정을 이용한 정확도 향상기법과 확률론적 보정을 이용한 정확도 향상기법 두 가지를 제안하였다. 대형압밀시험 결과를 이용한 예측기법의 적용성 검증 결과, 기존의 예측기법을 적용할 수 없는 점증재하 초기에도 비교적 적은 데이터를 이용하여 상당히 높은 정확도를 가지고 침하거동을 예측할 수 있었다. 또한, 성토완료이후에도 기존 예측기법과 제안된 방법의 비교, 분석 결과 최종침하량과 RMSE에서 모두 제안된 방법이 기존의 예측기법에 비하여 우수한 예측결과를 보였다.