• Title/Summary/Keyword: setaflash tester

Search Result 27, Processing Time 0.016 seconds

The Study on the Compatibility of MSDS by Means of Measurement of Combustible Properties for Isobutylalcohol(IBA) (이소부틸알코올(IBA)의 연소특성치 측정에 의한 MSDS의 적정성 연구)

  • Ha, Dong-Myeong
    • Journal of the Korean Institute of Gas
    • /
    • v.18 no.3
    • /
    • pp.75-81
    • /
    • 2014
  • For the safe handling of isobutylalcohol(IBA), this study was investigated the explosion limits of isobutylalcohol in the reference data. And the lower flash points, upper flash points and AITs(auto-ignition temperatures) by ignition delay time were experimented. By using the literatures data, the lower and upper explosion limits of isobutylalcohol recommended 1.7 Vol% and 10.9 Vol.%, respectively. The lower flash point of isobutylalcohol by using Setaflash and Penski-Martens closed-cup testers were experimented $25^{\circ}C$ and $30^{\circ}C$, respectively. The lower flash point isobutylalcohol by using Tag and Cleveland open cup testers were experimented $36^{\circ}C$ and $39^{\circ}C$, respectively. Also, this study measured relationship between the AITs and the ignition delay times by using ASTM E659 tester for isobutylalcohol. The experimental AIT of isobutylalcohol was $400^{\circ}C$.

The Measurement and Prediction of Combustible Properties for Ethylbenzene (에틸벤젠의 연소특성치 측정 및 예측)

  • Ha, Dong-Myeong
    • Journal of Energy Engineering
    • /
    • v.23 no.4
    • /
    • pp.169-175
    • /
    • 2014
  • For the safe handling of ethylbenzene, this study was investigated the explosion limits of ethylbenzene in the reference data. And the lower flash points, upper flash points and AITs(auto-ignition temperatures) by ignition delay time were experimented. The lower flash points of ethylbenzene by using Setaflash closed-cup and Pensky-Martens closed-cup testers were experimented $20^{\circ}C$ and $22^{\circ}C$, respectively. The lower flash points ethylbenzene by using Tag and Cleveland open cup testers were experimented $25^{\circ}C$ and $28^{\circ}C$, respectively. Also, this study measured relationship between the AITs and the ignition delay times by using ASTM E659 tester for ethylbnezene. The experimental AIT of ethylbenzene was $430^{\circ}C$. The calculated LEL and UEL by using the measured lower flash point and upper flash point were 0.93 Vol.% and 7.96 Vol.%, respectively.

The Measurement and Prediction of the Fire and Explosion Properties of Isoamyl alcohol (이소아밀알코올의 화재 및 폭발 특성치의 측정 및 예측)

  • Ha, Dongmyeong
    • Journal of Energy Engineering
    • /
    • v.25 no.3
    • /
    • pp.34-40
    • /
    • 2016
  • For the safe handling of isoamyl alcohol being used in various ways in the chemical industry, the flash point and the autoignition temperature(AIT) of isoamyl alcohol was experimented. And, the lower explosion limit of isoamyl alcohol was calculated by using the lower flash point obtained in the experiment. The flash points of isoamyl alcohol by using the Setaflash and Pensky-Martens closed-cup testers measured $31^{\circ}C$ and $33^{\circ}C$, respectively. The flash points of isoamyl alcohol by using the Tag and Cleveland open cup testers are measured $43^{\circ}C$and $45^{\circ}C$. The AIT of isoamyl alcohol by ASTM 659E tester was measured as $419^{\circ}C$. The lower explosion limit by the measured flash point $31^{\circ}C$ was calculated as 0.87 vol%. It was possible to predict lower explosion limit by using the experimental flash point or flash point in the literature.

The Study on Measurement and Prediction of Combustible Properties for Aniline (아닐린의 연소특성치의 측정 및 예측에 관한 연구)

  • Ha, Dong-Myeong
    • Journal of the Korean Institute of Gas
    • /
    • v.18 no.4
    • /
    • pp.44-50
    • /
    • 2014
  • For the safe handling of aniline, this study was investigated the explosion limits of aniline in the reference data. And the lower flash points, upper flash points and AITs(auto-ignition temperatures) by ignition delay time were experimented. The lower flash point of aniline by using Setaflash and Penski-Martens closed-cup testers were experimented $66^{\circ}C$ and $73^{\circ}C$, respectively. The lower flash point aniline by using Tag and Cleveland open cup testers were experimented $72^{\circ}C$ and $78^{\circ}C$, respectively. Also, this study measured relationship between the AITs and the ignition delay times by using ASTM E659 tester for aniline. The experimental AIT of aniline was $590^{\circ}C$. The calculated LEL and UEL by using the measured low flash point and upper flash point were 1.16 Vol.% and 8.36 Vol.%, respectively.

The Measurement of the Fire and Explosion Properties for 2-Methyl-1-butanol (2-Methyl-1-butanol의 화재 및 폭발 특성치의 측정)

  • Ha, Dong-Myeong
    • Journal of the Korean Institute of Gas
    • /
    • v.19 no.4
    • /
    • pp.8-14
    • /
    • 2015
  • For the safe handling of 2-methyl-1-butanol being used in various ways in the chemical industry, the flash point and the autoignition temperature(AIT) of 2-methyl-1-butanol was experimented. And, the lower explosion limit of 2-methyl-1-butanol was calculated by using the lower flash point obtained in the experiment. The flash points of 2-methyl-1-butanol by using the Setaflash and Pensky-Martens closed-cup testers measured $40^{\circ}C$ and $44^{\circ}C$, respectively. The flash points of 2-methyl-1-butanol by using the Tag and Cleveland open cup testers are measured $49^{\circ}C$ and $47^{\circ}C$. The AIT of 2-methyl-1-butanol by ASTM 659E tester was measured as $335^{\circ}C$. The lower explosion limit by the measured flash point $40^{\circ}C$ was calculated as 1.30 Vol.%. It was possible to predict lower explosion limit by using the experimental flash point or flash point in the literature.

The Measurement and Prediction of Fire and Explosion Properties of n-Nonane (노말노난의 화재 및 폭발 특성치의 측정 및 예측)

  • Ha, Dong-Myeong
    • Journal of the Korean Society of Safety
    • /
    • v.31 no.5
    • /
    • pp.42-48
    • /
    • 2016
  • The usage of the correct combustion properties of the treated substance for the safety of the process is critical. For the safe handling of n-nonane being used in various ways in the chemical industry, the flash point and the autoignition temperature(AIT) of n-nonane was experimented. And, the explosion limit of n-nonane was calculated by using the flash point obtained in the experiment. The flash points of n-nonane by using the Setaflash and Pensky-Martens closed-cup testers measured $31^{\circ}C$ and $34^{\circ}C$, respectively. The flash points of n-nonane by using the Tag and Cleveland open cup testers are measured $37^{\circ}C$ and $42^{\circ}C$. The AIT of n-nonane by ASTM 659E tester was measured as $210^{\circ}C$. The lower explosion limit by the measured flash point $31^{\circ}C$ was calculated as 0.87 vol%. And the upper explosion limit by the measured upper flash point $53^{\circ}C$ was calculated as 2.78 vol%. It was possible to predict lower explosion limit by using the experimental flash point or flash point in the literature.

Measurement and Prediction of the Combustible Properties of n-Butyl methacrylate(n-BMA) (n-Butyl methacrylate(n-BMA)의 연소특성치의 측정 및 예측)

  • Ha, Dong-Myeong
    • Journal of the Korean Society of Safety
    • /
    • v.31 no.4
    • /
    • pp.42-47
    • /
    • 2016
  • The combustible properties(flash point, explosion limit and autoignition temperature) are the important safety items which are considered in the typical MSDS(material safety data sheet). In this study, for the safe handling of n-butyl methacrylate(n-BMA) being used in various ways in the chemical industry, the flash point and the autoignition temperature(AIT) of n-butyl methacrylate was experimented. And, the lower explosion limit of n-butyl methacrylate was calculated by using the lower flash point obtained in the experiment. The flash points of n-butyl methacrylate by using the Setaflash and Pensky-Martens closed-cup testers measured $44^{\circ}C$ and $51^{\circ}C$, respectively. The flash points of n-butyl methacrylate by using the Tag and Cleveland open cup testers are measured $53^{\circ}C$. The AIT of n-butyl methacrylate by ASTM 659E tester was measured as $295^{\circ}C$. The lower explosion limit by the measured flash point $44^{\circ}C$ was calculated as 0.85 vol.%. It was possible to predict lower explosion limit by using the experimental flash point or flash point in the literature.