• Title/Summary/Keyword: sessile benthos

Search Result 3, Processing Time 0.014 seconds

Applicability of Steel Slag Aggregate for Artificial Armor Unit (제강슬래그 골재의 소파블록 적용성 평가)

  • Yang Eun-Ik;Lee Kwang-Gyo;Han Sang-Hun
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.5 s.83
    • /
    • pp.591-596
    • /
    • 2004
  • In order to evaluate the applicability of steel slag aggregates for tetrapod concrete, the properties of concrete as structural material were investigated. The biochemical research of marine concrete using steel slag aggregates was also carried out. The tested concrete properties are slump, ai content, compressive strength, splitting tensile strength, elastic modulus, carbonation, hydration heat, freezing and thawing, sulfate attack, drying shrinkage, etc. The biochemical experiments are carried to research the propagation and reproduction of seaweeds and survival of bottom dwelling species. According to this experiment results, the steel slag aggregate content did not have a significant effect on compressive strength, splitting tensile strength and elastic modulus. The durability of concrete was not influenced by the steel slag aggregate content. From the biochemical research, steel slag aggregate can be evaluated as the material that is ideally suited for promoting propagation and reproduction of seaweeds and sessile benthos.

The Introduction of Polychaetes Hydroides elegans (Haswell), Polydora limicola Annenkova, and Pseudopotamilla occelata Moore to the Northwestern Part of the East Sea

  • Bagaveeva, E.V.;Zvyagintsev, A.Yu.
    • Ocean and Polar Research
    • /
    • v.22 no.1
    • /
    • pp.25-36
    • /
    • 2000
  • The polychaeta fauna of the benthos and fouling of the northwestern part of the East Sea was studied during the period of 1971-1998. Three introduced species of polychaetes: Hydorides elegans (Haswell), Polydora limicola Annenkova, and Pseudopotamilla occelata Moore were found. H. elegans was discovered only on the artificial surfaces in Golden Horn Inlet (port Vladivostok), where this species may occur because of hermal pollution due to the discharge of warm waters of the water cooling system of Thermal-Electric Power Station-2 (TEPS-2) in Vladivostok which has been in function since 1971. The abundant population of H. elegans exists in the bay throughout the year and is capable of reproduction. The biomass of H. elegans may reach several $kg/m^2$ in August-September. P. limicola was found at the same time in the fouling of hydrotechnical structures of Vladivostok, Nakhodka, Holmsk and Uglegorsk ports with a biomass of $1-3kg/m^2$. Slow introduction of P. limicola occurs by coastal sail ships at present. The invasion of P. occelata into Peter the Great Bay may be an example of introduction and subsequent naturalization, which produced considerable changes in the structure of benthic communities. The three species of polychaetous sessile organisms and their invasion occurred by ocean and coasters sea-going ships (unintentional transport vectors). H. elegans and P. occelata were most probably transported to the northwestern part of the East Sea from Japan, and P.

  • PDF

Image Analysis of Typhoon Impacts on Soft Coral Community at Munseom in Jeju, Korea (제주도 문섬 조하대에 서식하는 연산호군락의 태풍에 의한 영향 분석)

  • Kang, Do-Hyung;Song, Jun-Im;Choi, Kwang-Sik
    • Ocean and Polar Research
    • /
    • v.27 no.1
    • /
    • pp.25-34
    • /
    • 2005
  • Impacts of Typhoon Maemi on a soft-coral community located on subtidal cliff at Munseom, Jeju were investigated in this study using underwater photography. Typhoon Maemi hit Jeju Island in late September 2003 and its impact was strong enough to destruct most shallow water sessile benthos including soft corals. To estimate numbers and size of soft-coral colonies, a line transect was installed on the cliff at depth from 3 to 9 m and photographs were taken serially by every 1m. From each $1{\times}1m$ underwater photograph, species and size of soft-coral colony was determined. Number of soft-coral colony and its Percent coverage (PC) in each $1m^2$ quadrat was calculated. Soft corals Scleronephthya gracillium, Dendronephthya gigantea, D. spinulosa and D. castanea were identified from the photographs. Dendronephthya sp. was mainly distributed at 3-6m while S. gracillimum was mostly occurred at $6{sim}9m$. A survey conducted before the typhoon showed that number of the soft-coral colonies at $3{\sim}4m,\;4{\sim}5m,\;5{\sim}6m,\;6{\sim}7m,\;7{\sim}8m\;and\;8{\sim}9m$ was 17, 24, 20, 23, 18 and 30 $colonies/m^2$ or 21, 48, 36, 28, 24 and 43%, respectively. After the typhoon, number of soft-coral colonies in the transect increased, 31, 35, 21, 10, 21 and 50 $colonies/m^2$ while PC was remarkably decreased as 21, 23, 21, 5, 9 and 13%, respectively. Our data suggested that the impact was limited in larger colonies; larger soft coral colonies were selectively destroyed and removed while the small colonies underneath the larger colonies remained undestroyed.