• Title/Summary/Keyword: servo solenoid

Search Result 33, Processing Time 0.019 seconds

Micro Valve with Functional Actuator (기능성 액츄에이터를 이용한 마이크로 밸브)

  • Yun, So-Nam;Ham, Young-Bog;Lee, Kyung-Woo;Kanda, Kunio
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.951-955
    • /
    • 2004
  • Piezoelectric(PZT) actuator can substitute for solenoid which is used in fluid control field because it has faster response times and no possibility of explosion. Besides, it is available in a high temperature and it has low energy consumption. In this study, pneumatic micro valve, bimorph type PZT actuator using the softner type PZT, carbon plate as a shim and its controller circuit were suggested and investigated. Performance tests and characteristics analysis, such as displacement, force, hysteresis and frequency properties, were carried out. The displacement of the actuator measured at the end point was 63 ${\mu}m$., force of the actuator was 0.052 N and maximum operating frequency was 15Hz. Also, characteristics of the micro valve with PZT actuator were evaluated in a testing system. The results show that the suggested PZT actuator is suitable for micro valve.

  • PDF

Tuning of PID Controller for Hydraulic Positioning System Using Genetic Algorithm (유전 알고리즘을 이용한 유압 위치계의 PID 제어기 동조)

  • Kim, Gi-Bum;Park, Seung-Min;Kim, In-Soo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.3
    • /
    • pp.93-101
    • /
    • 2016
  • This study presents a simple genetic algorithm to systematically design a PID controller for a hydraulic positioning system operated by a proportional solenoid valve. The inverse dead-zone compensator with nonlinear characteristics is used to cancel out the dead-zone phenomenon in the hydraulic system. The object function considering overshoot, settling time, and control input is adopted to search for optimal PID gains. The designed PID controller is compared with the LQG/LTR controller to check the performance of the hydraulic positioning system in the time and frequency domains. The experimental results show that the hydraulic servo system with the proposed PID controller responds effectively to the various types of reference input.

A Study on Stability Analysis of Hydraulic System Using High Speed On-Off Valves (고속전자밸브를 사용한 유압시스템의 안정성 해석에 관한 연구)

  • 유태재
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.27 no.3
    • /
    • pp.412-420
    • /
    • 2003
  • This study describes the merits of PWM control of hydraulic system using high speed on-off valves. Generally, Electro-hydraulic valves can be classified into two classification: valves which are controlled by analog signal and which are controlled by digital. The former includes hydraulic servo valves and proportional valves which require A/D converters as interface to digital computer and too costly and sensitive to oil contamination because of complexity in structures. The latter includes high speed on-off valves which do not require A/D converters because they are normally operated in a pulse width modulation(PWM) method, and are low in price and robust to oil contamination because of their simple structures. The objectives of this study is to analyze the limit cycle which regularly appear in the position control system using 2/2way high speed on-off valves and to give a criterion for the stability of this system. The nonlinear characteristics of PWM and cylinder friction of this system are described by harmonic linearization and the effects of parameter variations to the system stability are simulated.