• Title/Summary/Keyword: servo solenoid

Search Result 33, Processing Time 0.027 seconds

A Study on the Characteristics Improvement of Electro-Hydraulic Servo System Controlled by High Speed Solenoid Valve (고속전자밸브로 제어되는 전기.유압 서보시스템의 특성 개선에 관한 연구)

  • Park, Seong-Hwan;Lee, Jin-Geol
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.4
    • /
    • pp.288-294
    • /
    • 2001
  • In this study, a new PWM method considering the actuation delay of high speed solenoid valves is proposed to improve the response characteristics of electro hydraulic servo systems controlled by high speed solenoid valves. In addition, the decision method for the system gain, the basic period of PWM, and the sampling time is proposed, Since the conventional system controlled by high speed solenoid valves is too slow to apply this method, a high speed driving circuit(Quick-Drive) which enables rapid switching of the high speed solenoid valve at a high speed sampling mode is applied to realize this method. The experimental result shows that it is possible to achieve precision and quiet control without occurrence of limit cycle and wide range dead band.

  • PDF

Design of High Speed Solenoid Actuator for Hydraulic Servo Valve Operation

  • Sung, Baek-Ju;Kim, Do-Sik
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.2 no.2
    • /
    • pp.239-245
    • /
    • 2013
  • Modern electric controlled valves are demanded that its solenoid actuator should be smaller size, lighter weight, lower consumption power, and higher response time. For achieving these purposes, the major design factors of solenoid actuator such as magnetic flux density, coil turn numbers, plunger size, bobbin dimension, and etc. are must be optimized. In this study, for optimal design of high speed solenoid actuator for hydraulic servo valve operation, we draw up governing equations which are composed by combination of electromagnetic theories and empirical knowledge, and deduct the values of major design factors by use of them. For more increase the operating speed, voice coil are used as main armature in manufacturing of prototype actuator. And, we have proven the propriety of the governing equations and speed increasing method by experiments using the hydraulic valve assembly adopted the prototype of solenoid actuator.

Design and Performance Test of the Force Motor for Direct Drive-type Pneumatic Servo Valve (직동식 공압서보밸브의 Force Motor 설계 및 성능시험)

  • 이원희;김동수;박상운
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.836-839
    • /
    • 2003
  • A pneumatic servo valve which is widely applied in industrial field. And It is consist of force motor, spool & sleeve and servo controller. In this study. we developed the force motor which is consume to low power for a pneumatic servo valve. We could reduce the number of turn of the solenoid by using ferromagnetic permanent magnet and took different direction of each other using one coil instead of two coil. we modeled a system consisting of various electro-mechanical subsystems. The appropriateness of the model was verified by simulation. The simulation model resolved the motion of spool, the winding current and the magnetic force. Also, we calculated the displacement and velocity of the spool, flux contour line, b vector. flux density. flux linkage, back EMF etc.

  • PDF

Study on Injection Response of Servo-Hydraulic Injector with Different Actuation Method (구동방식이 다른 서보유압형 인젝터의 분사응답성 연구)

  • Kwon, J.W.;Jeong, M.C.;Lee, J.W.
    • Journal of ILASS-Korea
    • /
    • v.18 no.2
    • /
    • pp.87-93
    • /
    • 2013
  • In this paper, high-pressure injection characteristic of servo hydraulic injector as the key component of diesel CRDi system, which is driven by solenoid and piezo-actuator were examined by experimental analysis. High-pressure injection characteristic of standard diesel fuel injected at high pressure up to 160 MPa was investigated at high-pressure chamber by using a high-speed camera for spray visualization and quantitative analysis. By this study, we found that the piezo-driven injector has better performances in controlling the fuel injection with the high pressure, including fuel quantity, spray penetration length and spray velocity, than that of a solenoid-driven injector. In particular, the needle response time for start of injection in piezo-driven injector was faster of about $125{\mu}s$ than that of solenoid-driven injector. Consequently, it is known that the piezo-driven injector has more degrees of freedom in controlling the fuel injection with the high pressure than solenoid-driven injector.

Comparison on Spray Characteristics of Diesel HEV Injectors for 3-different Driving Type (SI, PI, DPI) (3개 구동방식(SI, PI, DPI)별 디젤HEV용 인젝터의 분무 특성 비교)

  • Chung, M.C.;Sung, G.S.;Kim, S.M.;Lee, J.W.
    • Journal of ILASS-Korea
    • /
    • v.19 no.1
    • /
    • pp.9-14
    • /
    • 2014
  • Performance of DI diesel engine with high-pressure fuel injection equipment is directly related to its emission characteristics and fuel consumption. So, the electro-hydraulic injector for the common-rail injection system should be designed to meet the precise high fuel delivery control capability. Currently, most high pressure injector in use has a needle driven by the solenoid coil energy or the piezo actuator controlled by charge-discharge of output pulse current. In this study, macroscopic spray approaching method was applied under constant volume chamber to research the performance of three different injectors : solenoid, indirect-acting piezo and direct-acting piezo type for CR direct-injection. LED back illumination for Mie scattering was applied on the liquid spray visible of direct-acting piezo injector, including hydraulic-servo type solenoid and piezo-driven injectors. As main results, we found that a direct-acting piezo injector had better a spray tip penetration than hydraulic-servo injectors in spray visualization.

A study on performance improvement of position control system in hydraulic cylinder for heavy construction machinery (건설기계용 유압실린더 위치 제어시스템의 성능개선에 관한 연구)

  • 한석재;박성환;이진걸
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.1450-1454
    • /
    • 1996
  • Even though digital control type high speed solenoid valve is a little inferior to analog control type servo valve and proportional control valve in performance, it is cheap and has secure performance against pollutant and simple control circuit. But high speed solenoid valve is hardly used for heavy machinery instead of servo valve or proportional control valve that is used in severe condition because the valve itself is small capacity and it shows wide dead zone during on-off control and chattering of hydraulic cylinder by chattering of pressure. It is desirable to use low-priced and strong pollutant resistant high speed solenoid valve for obtaining reliability of operation from severe working condition because it isn't necessary to acquire response characteristic of high frequency when we consider the characteristic of heavy machinery operation. In this study, PWM control algorithm for pilot pressure control of large capacity pilot operating valve will be used for precision position control of heavy machinery hydraulic cylinder. Not only cost reduction of main control valve but also high reliability of heavy machinery in severe condition can be obtained by using this pilot operating spool valve with high speed solenoid valve.

  • PDF

Development of a Hydraulic Servo Cylinder with an Integrated Feedback Mechamism (일체형 파드백 기구를 갖는 유압 서보실린더 개발 연구)

  • Lee, Jae-Gyu;Kim, Ock-Hyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.8
    • /
    • pp.2480-2490
    • /
    • 1996
  • This paper presents a new type of hydraulic servo chllinder which is characterized by its simple construction and an ubtegrated feedback mechanism. Piston position of the cylinder is controlled by eletrical input and mechamical feedback deduced from its own structure. Hydraulic pressure in each cylinder room is controlled by a poppet valve. The poppet is activated by a solenoid and is linked to the piston. Solenoid input current pulls up the poppet, which results in pressure drop and thus piston motion. The piston motion generates pull down force on the poppet by the linkage and the motion stops at equilibrium. In that way the piston position is controlled by an expernal input current. Characteristics of the servo cylinder is verified by stability analysis, tranient vehavior and steady state positing for step input. Design parameter analyses have been executed by derivation of analytical approximate solutions and by computer simulations. A prototype hydraulic servo cylinder is developed and tested. The experimental results show successful function of the servo cylinder and consistency with the theoritical results.

Intelligent control of pneumatic actuator using MPWM (MPWM을 이용한 공압 실린더의 지능제어)

  • 송인성;표성만;안경관;양순용;이병룡
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.530-535
    • /
    • 2002
  • Pneumatic control system has been applied to build many industrial automation systems. But most of them are sequence control type because of their low costs, safety, reliability, etc. Pneumatic servo system is rarely applied to real industrial fields because accurate position control is very difficult due to its nonlinearity and compressibility of air. In pneumatic servo control system, a pneumatic servo valve can be applied, But it is very expensive and has no advantage of low cost compared with a common pneumatic system. This paper is concerned with the accurate position control of a rodless pneumatic cylinder using on/off solenoid valve. A novel Intelligent Modified Pulse Width Modulation(MPWM) is newly proposed. The control performance of this pneumatic cylinder depends on the external loads. To overcome this problem, switching of control parameter using artificial neural network is newly proposed, which estimates external loads on rodless pneumatic cylinder using this training neural network. As an underlying controller, a state feedback controller using position, velocity and acceleration is applied in the switching control the system. The effectiveness of the proposed control algorithms are demonstrated through experiments nth various loads.

  • PDF