• Title/Summary/Keyword: service resource allocation

Search Result 333, Processing Time 0.028 seconds

Resouce Allocation for Multiuser OFDM Systems (다중사용자 OFDM 광대역 무선인터넷 시스템의 자원할당 방법)

  • Chung, Yong-Joo;Paik, Chun-Hyun;Kim, Hu-Gon
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.32 no.3
    • /
    • pp.33-46
    • /
    • 2007
  • This study deals with the adaptive multiuser OFDM (Orthogonal Frequency Division Multiplexing) system which adjusts the resource allocation according to the environmental changes in such as wireless and quality of service required by users. The resource allocation includes subcarrier assignment to users, modulation method and power used for subcarriers. We first develop a general optimization model which maximizes data throughput while satisfying data rates required by users and total power constraints. Based on the property that this problem has the 0 duality gap, we apply the subgradient dual optimization method which obtains the solution of the dual problem by iteration of simple calculations. Extensive experiments with realistic data have shown that the subgradient dual method is applicable to the real world system, and can be used as a dynamic resource allocation mechanism.

Adaptive Resource Allocation for Traffic Flow Control in Hybrid Networks

  • Son, Sangwoo;Rhee, Byungho
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.1
    • /
    • pp.38-55
    • /
    • 2013
  • Wireless network systems provide fast data transmission rates and various services to users of mobile devices such as smartphones and smart pads. Because many people use high-performance mobile devices, the use of real-time multimedia services is increasing rapidly. However, the preoccupation of resources by real-time traffic users is causing harm to other services-for example, frequent call interference, lowered service quality, and poor network performance. This paper suggests a resource allocation algorithm for effective traffic service support in a hybrid network. The main objective is to obtain an optimum value of data rates by comparing user requirements with the amount of resources that can be allocated. A new mechanism based on Adaptive-Quality of Service (QoS) and a monitoring system based on Queue-Aware are proposed. Adaptive-QoS supports effective resource control according to the type of traffic service, and the monitoring system based on Queue-Aware measures the amount of resources in order to calculate the maximum that can be allocated. We apply our algorithm to a test system and use Qualnet 4.5.1 to evaluate its performance.

Implementation of On-demand QoS management System for Bandwidth Resource Allocation (대역폭 자원 할당을 위한 주문형 Qos 관리 시스템 구현)

  • Lee, Dongwook;Yi, Dong-Hoon;Kim, Jongwon;Sanggil Jung;Okhwan Byun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.4B
    • /
    • pp.444-454
    • /
    • 2004
  • To support diverse transmission requirements of multimedia applications, Quality of Service (QoS) should be provided in the Internet, where only the best-effort service is available. In this paper, we describe our recent effort on the implementation and verification of an extendable and flexible QoS allocation and resource management system based on the bandwidth broker model for realizing the IETF differentiated service (DiffServ). Focusing on the bandwidth issue over single administrative domain, the implemented system provides real-time resource reservation and allocation, delayed call admission control, simple QoS negotiation between sewer and users, and simple resource monitoring. The implemented system is verified by evaluating the performance of a resource-intensive application over the real-world testbed network.

Adaptive Radio Resource Allocation for a Mobile Packet Service in Multibeam Satellite Systems

  • Lim, Kwang-Jae;Kim, Soo-Young;Lee, Ho-Jin
    • ETRI Journal
    • /
    • v.27 no.1
    • /
    • pp.43-52
    • /
    • 2005
  • In this paper, we introduce an adaptive radio resource allocation for IP-based mobile satellite services. We also present a synchronous multibeam CDMA satellite system using an orthogonal resource sharing mechanism among downlink beams for the adaptive packet transmission. The simulation results, using a Ka-band mobile satellite channel and various packet scheduling schemes, show that the proposed system and resource allocation scheme improves the beam throughput by more than two times over conventional systems. The simulation results also show that, in multibeam satellite systems, a system-level adaptation to a user's channel and interference conditions according to user locations and current packet traffic is more efficient in terms of throughput improvement than a user-level adaptation.

  • PDF

Dynamic Channel Allocation and Channel Access Mechanism of Multimedia Traffic in the UTRA TDD Systems (UTRA TDD 시스템에서 멀티미디어 트래픽의 동적 채널 할당 및 채널 액세스 매커니즘)

  • 주용원;윤찬영;오영환
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.27 no.8C
    • /
    • pp.819-827
    • /
    • 2002
  • Personal mobile communication has been developed up to IMT-2000 which is called the third generation mobile communication. The first generation of personal mobile communication was analog cellular, the second was digital cellular, and the 2.5 generation was PCS. Before the third generation had been developed, the personal mobile communication service was focused mainly on the voice-oriented service. But, we can expect that multimedia service after the third generation system will be the core of the subject. T In this thesis, we propose a dynamic resource allocation algorithm in the UTRA TDD systems which can support the asymmetric traffic propensity and multimedia traffic. The proposed algorithm consists two sub-algorithms. One is the dynamic channel allocation method that determines the amount of bandwidth assigned between uplink and downlink according to resource allocation status list through asymmetric traffic propensity. The other is the channel access mechanism that assigns RU to bearer service generated in a cell. By simulation, the proposed dynamic resource allocation algorithm is proved to support asymmetric propensity of traffic and shows a better throughput for multimedia traffic.

Joint Resource Allocation for Cellular and D2D Multicast Based on Cognitive Radio

  • Wu, Xiaolu;Chen, Yueyun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.1
    • /
    • pp.91-107
    • /
    • 2014
  • Device-to-device (D2D) communication is an excellent technology to improve the system capacity by sharing the spectrum resources of cellular networks. Multicast service is considered as an effective transmission mode for the future mobile social contact services. Therefore, multicast based on D2D technology can exactly improve the spectrum resource efficiency. How to apply D2D technology to support multicast service is a new issue. In this paper, a resource allocation scheme based on cognitive radio (CR) for D2D underlay multicast communication (CR-DUM) is proposed to improve system performance. In the cognitive cellular system, the D2D users as secondary users employing multicast service form a group and reuse the cellular resources to accomplish a multicast transmission. The proposed scheme includes two steps. First, a channel allocation rule aiming to reduce the interference from cellular networks to receivers in D2D multicast group is proposed. Next, to maximize the total system throughput under the condition of interference and noise impairment, we formulate an optimal transmission power allocation jointly for the cellular and D2D multicast communications. Based on the channel allocation, optimal power solution is in a closed form and achieved by searching from a finite set and the interference between cellular and D2D multicast communication is coordinated. The simulation results show that the proposed method can not only ensure the quality of services (QoS), but also improve the system throughput.

A Novel Resource Allocation Algorithm in Multi-media Heterogeneous Cognitive OFDM System

  • Sun, Dawei;Zheng, Baoyu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.4 no.5
    • /
    • pp.691-708
    • /
    • 2010
  • An important issue of supporting multi-users with diverse quality-of-service (QoS) requirements over wireless networks is how to optimize the systematic scheduling by intelligently utilizing the available network resource while, at the same time, to meet each communication service QoS requirement. In this work, we study the problem of a variety of communication services over multi-media heterogeneous cognitive OFDM system. We first divide the communication services into two parts. Multimedia applications such as broadband voice transmission and real-time video streaming are very delay-sensitive (DS) and need guaranteed throughput. On the other side, services like file transmission and email service are relatively delay tolerant (DT) so varying-rate transmission is acceptable. Then, we formulate the scheduling as a convex optimization problem, and propose low complexity distributed solutions by jointly considering channel assignment, bit allocation, and power allocation. Unlike prior works that do not care computational complexity. Furthermore, we propose the FAASA (Fairness Assured Adaptive Sub-carrier Allocation) algorithm for both DS and DT users, which is a dynamic sub-carrier allocation algorithm in order to maximize throughput while taking into account fairness. We provide extensive simulation results which demonstrate the effectiveness of our proposed schemes.

QoS-, Energy- and Cost-efficient Resource Allocation for Cloud-based Interactive TV Applications

  • Kulupana, Gosala;Talagala, Dumidu S.;Arachchi, Hemantha Kodikara;Fernando, Anil
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.6 no.3
    • /
    • pp.158-167
    • /
    • 2017
  • Internet-based social and interactive video applications have become major constituents of the envisaged applications for next-generation multimedia networks. However, inherently dynamic network conditions, together with varying user expectations, pose many challenges for resource allocation mechanisms for such applications. Yet, in addition to addressing these challenges, service providers must also consider how to mitigate their operational costs (e.g., energy costs, equipment costs) while satisfying the end-user quality of service (QoS) expectations. This paper proposes a heuristic solution to the problem, where the energy incurred by the applications, and the monetary costs associated with the service infrastructure, are minimized while simultaneously maximizing the average end-user QoS. We evaluate the performance of the proposed solution in terms of serving probability, i.e., the likelihood of being able to allocate resources to groups of users, the computation time of the resource allocation process, and the adaptability and sensitivity to dynamic network conditions. The proposed method demonstrates improvements in serving probability of up to 27%, in comparison with greedy resource allocation schemes, and a several-orders-of-magnitude reduction in computation time, compared to the linear programming approach, which significantly reduces the service-interrupted user percentage when operating under variable network conditions.

A Minimum Data-Rate Guaranteed Resource Allocation With Low Signaling Overhead in Multi-Cell OFDMA Systems

  • Kwon, Ho-Joong;Lee, Won-Ick;Lee, Byeong-Gi
    • Journal of Communications and Networks
    • /
    • v.11 no.1
    • /
    • pp.26-35
    • /
    • 2009
  • In this paper, we investigate how to do resource allocation to guarantee a minimum user data rate at low signaling overhead in multi-cell orthogonal frequency division multiple access (OFDMA) wireless systems. We devise dynamic resource allocation (DRA) algorithms that can minimize the QoS violation ratio (i.e., the ratio of the number of users who fail to get the requested data rate to the total number of users in the overall network). We assume an OFDMA system that allows dynamic control of frequency reuse factor (FRF) of each sub-carrier. The proposed DRA algorithms determine the FRFs of the sub-carriers and allocate them to the users adaptively based on inter-cell interference and load distribution. In order to reduce the signaling overhead, we adopt a hierarchical resource allocation architecture which divides the resource allocation decision into the inter-cell coordinator (ICC) and the base station (BS) levels. We limit the information available at the ICC only to the load of each cell, that is, the total number of sub-carriers required for supporting the data rate requirement of all the users. We then present the DRA with limited coordination (DRA-LC) algorithm where the ICC performs load-adaptive inter-cell resource allocation with the limited information while the BS performs intra-cell resource allocation with full information about its own cell. For performance comparison, we design a centralized algorithm called DRA with full coordination (DRA-FC). Simulation results reveal that the DRA-LC algorithm can perform close to the DRA-FC algorithm at very low signaling overhead. In addition, it turns out to improve the QoS performance of the cell-boundary users, and achieve a better fairness among neighboring cells under non-uniform load distribution.

Resource Allocation Algorithm for Differentiated Multimedia Services Using Came Theory (게임이론을 이용한 멀티미디어 서비스의 차별적 자원 할당 알고리즘)

  • Shin, Kwang-Sup;Jung, Jae-Yoon;Suh, Doug-Young;Kang, Suk-Ho
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.34 no.1
    • /
    • pp.39-59
    • /
    • 2009
  • Game theory is adapted to a variety of domains such as economics, biology, engineering, political science, computer science, and philosophy in order to analyze economic behaviors. This research is an application of game theory to wireless communication. In particular, in terms of bargaining game we dealt with a multimedia resource allocation problem in wireless communication, which is rapidly spreading such as Wibro, WCDML, IPTV, etc. The algorithm is assumed to allocate multimedia resources to users who can choose and access differentiated media services. For this purpose, 3 utility function of users is devised to reflect quality of service (QoS) and price. We illustrated experimental results with synthesis data which were made to mimic real multimedia data, and analyzed differentiated service providing and the effect of the utility function.