• Title/Summary/Keyword: series-connected battery

Search Result 60, Processing Time 0.036 seconds

A New Modularized Balancing Circuit for Series Connected Battery cells

  • Lee, Hyo-Jae;Jung, Young-Seok
    • Journal of Power System Engineering
    • /
    • v.18 no.6
    • /
    • pp.193-199
    • /
    • 2014
  • The series connected battery cells are mainly used in high voltage battery pack application. However parameter inequality of each battery cell makes battery voltage imbalance problem. In this paper, a new balancing circuit utilizing converter scheme for the series connected battery cells is proposed. Proposed circuit offers easy control and fast equalization time. Moreover the circuit can be used in a practical application because it has high modularity and can operate during the charging/discharging cycle. To show its superiorness and effectiveness, the principle of proposed circuit is explained with computer simulation and experiment is carried out using lithium-ion battery.

Online DCIR Estimation for Series-connected Battery Cells using Matrix-Switched Capacitor Converter

  • La, Phuong-Ha;Choi, Sung-Jin
    • Proceedings of the KIPE Conference
    • /
    • 2020.08a
    • /
    • pp.381-382
    • /
    • 2020
  • In the battery energy storage system, battery cells are connected in series to increase the operating voltage. Due to the difference in characteristics, the performance degradation of cells is dissimilar. This paper proposes an online DC internal impedance estimation for battery cells in the series string using a matrix-switched capacitor converter, which is already verified as useful for the series balancing of the cells. The simulation in the hardware in the loop test rig shows good accuracy and the feasibility of the proposed method.

  • PDF

A Modularized Two-Stage Charge Equalization Converter for Series Connected Lithium-Ion Battery Strings

  • Kim, Chol-Ho;Park, Hong-Sun;Moon, Gun-Woo
    • Proceedings of the KIPE Conference
    • /
    • 2008.06a
    • /
    • pp.535-537
    • /
    • 2008
  • This paper proposes a modularized two-stage charge equalization converter for a series-connected lithium-ion battery string. In this paper, the series-connected battery sting is modularized into M modules, and each module has K cells in series. With this modularization, low voltage stress on the electronic devices can be achieved. A two-stage dc-dc converter with cell selection switches is employed. The first stage dc-dc converter steps down the high bus voltage to about 10 V. The second stage dc-dc converter integrated with selection switches equalizes the cell voltages. A prototype for 88 lithium-ion battery cells is optimally designed and implemented. Experimental results verify that the proposed equalization method has good cell balancing performance showing low voltage stress, small size, and low cost.

  • PDF

Battery Equalization Method for Parallel-connected Cells Using Dynamic Resistance Technique

  • La, Phuong-Ha;Choi, Sung-Jin
    • Proceedings of the KIPE Conference
    • /
    • 2018.11a
    • /
    • pp.36-38
    • /
    • 2018
  • As the battery capacity requirement increases, battery cells are connected in a parallel configuration. However, the sharing current of each battery cell becomes unequal due to the imbalance between cell's impedance which results the mismatched states of charge (SOC). The conventional fixed-resistance balancing methods have a limitation in battery equalization performance and system efficiency. This paper proposes a battery equalization method based on dynamic resistance technique, which can improve equalization performance and reduce the loss dissipation. Based on the SOC rate of parallel connected battery cells, the switches in the equalization circuit are controlled to change the equivalent series impedance of the parallel branch, which regulates the current flow to maximize SOC utilization. To verify the method, operations of 4 parallel-connected 18650 Li-ion battery cells with 3.7V-2.6Ah individually are simulated on Matlab/Simulink. The results show that the SOCs are balanced within 1% difference with less power dissipation over the conventional method.

  • PDF

A High Efficiency Zero Voltage/Zero Current Transition Converter for Series Connected Battery Cell Equalization (영전압/영전류 스위칭을 이용한 고효율의 직렬 접속 배터리 전압 밸런싱 방법)

  • Kim, Tae-hoon;Park, Nam-Ju;Hyun, Dong-seok;Kim, Rae-young
    • Proceedings of the KIPE Conference
    • /
    • 2011.11a
    • /
    • pp.26-27
    • /
    • 2011
  • This paper focuses on the zero-voltage/zero current transition voltage equalization circuit for the series connected battery cell. By adding auxiliary resonant cells at the main switching devices such as MOSFET or IGBT, zero current switching is achieved and turned off loss of switching elements is eliminated and by the voltage/second balancing of the inductor, zero voltage switching can be applied to switching element. Transformer coupling between battery cells and ZVZCT (Zero Voltage Zero Current Transition) switching method allow the fast balancing speed and high frequency operation, which reduces the size and weight of the circuit. The validity of the battery equalization is further verified using simulation involving four lithium-ion battery cell models.

  • PDF

Study of bidirectional DCDC converter to prevent circulating current between battery packs (배터리 팩 간의 순환전류 방지를 위한 양방향 DCDC 컨버터 연구)

  • Lee, Seunghyun;Joo, Sungjun
    • Journal of IKEEE
    • /
    • v.23 no.2
    • /
    • pp.695-703
    • /
    • 2019
  • In this paper, we propose a method to remove the circulating current which can occur in the parallel connection of the high voltage series connected battery module in the battery pack. The removal way is a method of inserting a module named VVSM (Variable Voltage Variable Module) using bidirectional DCDC converter and supercapacitor in place of one or some of the cascaded battery cells in the battery pack configuration. In this module, it operates like a battery cell that can be controlled at a desired voltage. VVSM is used to match the voltages of the cascaded battery modules very easily. To demonstrate the proposed method, a PSIM simulation for battery model is used. In addition, the module with only the battery cell connected in series and the module with the proposed VVSM are made, and the two modules were connected in parallel to measure the circulating current between the two modules. As a result, it was verified that the proposed method effectively suppressed the circulating current.

Individual Charge Equalization Converter Using Selective Two Current Paths for Series Connected Li-ion Battery Strings

  • Kim, Chol-Ho;Park, Hong-Sun;Moon, Gun-Woo
    • Proceedings of the KIPE Conference
    • /
    • 2008.06a
    • /
    • pp.274-276
    • /
    • 2008
  • This paper proposes an individual charge equalization converter using selective two current paths for series connected lithium-ion battery strings. In the proposed equalizer, a central equalization converter acting as a controllable current source is sequentially connected in parallel with individual batteries through an array of cell selection switches. A flyback converter with a modified rectifier realizes a controllable current source. A central equalization converter is shared by every battery cells through the cell selection switch, instead of a dedicated charge equalizer for each cell. With this configuration, although the proposed equalizer has one dc-dc converter, individual charge equalization can be effectively achieved for the each cell in the strings. Furthermore, since the proposed equalizer would not allocate the separated dc-dc converter to each cell, such that the implementation of great size reduction and low cost can be allowed. In this paper, an optimal power rating design guide is also employed to obtain a minimal balancing size while satisfying equalization requirements. A prototype for eight lithium-ion battery cells is optimally designed and implemented. Experimental results verify that the proposed equalization method has good cell balancing performance showing small size, and low cost.

  • PDF

Individual Charge Equalization Converter with Parallel Primary Winding of Transformer for Series Connected Lithium-Ion Battery Strings in an HEV

  • Kim, Chol-Ho;Park, Hong-Sun;Kim, Chong-Eun;Moon, Gun-Woo;Lee, Joong-Hui
    • Journal of Power Electronics
    • /
    • v.9 no.3
    • /
    • pp.472-480
    • /
    • 2009
  • In this paper, a charge equalization converter with parallel-connected primary windings of transformers is proposed. The proposed work effectively balances the voltage among Lithium-Ion battery cells despite each battery cell has low voltage gap compared with its state of charge (SOC). The principle of the proposed work is that the equalizing energy from all battery strings moves to the lowest voltage battery through the isolated dc/dc converter controlled by the corresponding solid state relay switch. For this research a prototype of four Lithium-Ion battery cells is optimally designed and implemented, and experimental results show that the proposed method has excellent cell balancing performance.

Multi-module Equalizer Circuit for Series-Connected Li-ion Batteries

  • Shin, Jong-Won;Seo, Gab-Su;Kim, Jong-Hoon;Cho, Bo-Hyung
    • Proceedings of the KIPE Conference
    • /
    • 2010.07a
    • /
    • pp.420-421
    • /
    • 2010
  • In this paper, a multi-module selective battery equalizer for series-connected Li-ion battery pack is proposed. Selective Equalizer (SE) scheme achieves smaller volume and lighter weight than individual cell equalizer (ICE) by minimizing the part count of bulky circuit element. However, SE scheme shows slow balancing speed when the voltage imbalance simultaneously occurs in more than one cell. The proposed multi-module overcomes the problem by employing multiple power converters. Prototype hardware is implemented and experimented with 14Ah battery cells to validate the performance of the proposed equalizer.

  • PDF

Charge Equalization Converter with Parallel Primary Winding for Series Connected Lithium-Ion Battery strings (트랜스포머 1차측 병렬 구조를 가진 직렬 연결 리튬이온 배터리 전하 균일 컨버터)

  • Kim, Chol-Ho;Park, Hong-Sun;Kim, Chong-Eun;Moon, Gun-Woo;Lee, Joong-Hui
    • Proceedings of the KIPE Conference
    • /
    • 2007.07a
    • /
    • pp.256-258
    • /
    • 2007
  • A charge equalization converter with parallel-connected primary windings of transformers is proposed in digest. The proposed work effectively balance the voltage among Lithium-Ion battery cells despite each battery cell has low voltage gap compared with its SOC. The principle of the proposed work is that the equalizing energy from all battery strings moves to the lowest voltage battery through the isolated dc/dc converter controlled by the corresponding bi-directional switch. In this digest, a prototype of four Lithium-Ion battery cells is optimally designed and implemented, and experimental results show that the proposed method has excellent cell balancing performance.

  • PDF