• Title/Summary/Keyword: series

Search Result 23,848, Processing Time 0.045 seconds

Effect of Band Application of Slow Release Fertilizer on Rice Growth and Yield in Puddled-soil Drill Seeding (벼 무논골뿌림재배시 완효성비료의 측조 시비가 생육 및 수량에 미치는 영향)

  • Kim, Sang-Su;Choi, Min-Gyu;Park, Keon-Ho;Lee, Seon-Yong;Cho, Su-Yeon;Cho, Dong-Sam
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.41 no.1
    • /
    • pp.68-76
    • /
    • 1996
  • To elucidate the optimum fertilizer level and application method for band application under puddled-soil drill seeding in Jeonbuk series of fluvio-marine alluvial soil at National Honam Agricultural Experiment Station in 1995, using Dongjinbyeo, slow releasing compound fertilizer of 100% and 80% to conventional application level was applied totally as basal fertilizer simultaneously with seeding under 3cm and 5cm depth from soil surface in a distance of 4cm from the seeded row. Plant height was taller and tiller number was higher in band application than conventional application but ratio of effective tiller was vice versa. Panicle number was more but ratio of effective tiller ratio was lower in 100% than 80% level of band application and they were higher in 3cm than 5cm depth from soil surface. Leaf area index and dry weight was higher in conventional application at early growth stage but was vice versa after maximum tillering stage, and they were higher in 3cm depth at early growth stage but 5cm depth after maximum tillering stage. NH$_4$-N in soil was higher in conventional application at 25 days after seeding but, thereafter was lower than band application and it was higher in 3cm than 5cm depth till 40 days after seeding but was versa, thereafter. Lodging degree was slightly higher in band application, 100% level and 5cm depth than in their counterparts. Panicle number and grain number per $m^2$ was lower in conventional application than 80% or 100% level of band application without significant difference between band application levels or application methods. Yield was higher at 80% level of band application under 3cm depth than conventional application, but no significantly different among other application methods. Therefore, 80% level of band application under 3cm depth of soil surface was more effective for puddled-soil drill seeding on the basis of the reduction of application efforts, better plant growth and higher yield in rice.

  • PDF

A Study on type and characteristics of organization-related negative affect. (조직관련상황에서 구성원이 느끼는 불안 정서의 유형과 특성에 관한 연구)

  • Jong Dae Kim
    • Korean Journal of Culture and Social Issue
    • /
    • v.21 no.4
    • /
    • pp.617-647
    • /
    • 2015
  • The purposes of this study was to develop a valid scale measuring organization-related anxiety and to use this scale to examine the relation of organizational anxiety to demographic variables, job satisfaction and organizational committment. A series of studies were conducted to develop a scale for organizational anxiety. Initially, the 97 items were adopted by expert ratings. A exploratory factor analysis with a sample of 435 workers yielded a preliminary version of organizational anxiety scale with 28 items. Subsequently, a confirmatory factor analysis was conducted with a sample of 566 workers, leaving 20 items. The final version of the organizational anxiety scale consisted of 4 sub-factors: perception of future uncertainty, perception of locus of control, interpersonal anxiety, and perception of alternatives. In this study, the examined demographic characteristics included sex, age, type of occupation, type of industry, occupational position, monthly income and educational level. Organizational effectiveness was composed of job satisfaction and organizational commitment. As mediators, organizational culture, life satisfaction, self efficacy, and social support were explored. The negative relationship was observed between organizational anxiety and organizational effectiveness. The results showed the significant differences in organizational anxiety by demographic characteristics. The mediators were explored for the relationship between organizational anxiety and job satisfaction and between organizational anxiety and organizational commitment. The negative relationship between organizational anxiety and job satisfaction was mediated by the group culture, the developmental culture, the rational culture, life satisfaction, self-efficacy, and social support. Individuals with the higher level of these mediators reported greater job satisfaction even if they experienced organizational anxiety. The partial mediation effect of the group culture, the developmental culture, the rational culture, life satisfaction, and social support was observed on the negative relationship between organizational anxiety and organizational commitment. These results implies that job satisfaction and organizational commitment can be improved with the interventions on organizational cultures, self-efficacy, and social support despite the presence of organizational anxiety. Based on these results, the implication and limitations of this study and the directions for future research discussed.

Assessment of stream water quality and pollutant discharge loads affected by recycled irrigation in an agricultural watershed using HSPF and a multi-reservoir model (HSPF와 다중 저류지 모형을 이용한 농업지역 순환관개에 의한 하천 수질 및 배출부하 영향 분석)

  • Kyoung-Seok Lee;Dong Hoon Lee;Youngmi Ahn;Joo-Hyon Kang
    • Journal of Wetlands Research
    • /
    • v.25 no.4
    • /
    • pp.297-305
    • /
    • 2023
  • The recycled irrigation is a type of irrigation that uses downstream water to fulfill irrigation demand in the upstream agricultural areas; the used irrigation water returns back to the downstream. The recycled irrigation is advantageous for securing irrigation water for plant growth, but the returned water typically contains high levels of nutrients due to excess nutrients inputs during the agricultural activities, potentially deteriorating stream water quality. Therefore, quantitative assessment on the effect of the recycled irrigation on the stream water quality is required to establish strategies for effective irrigation water supply and water quality management. For this purpose, a watershed model is generally used; however no functions to simulate the effects of the recycled irrigation are provided in the existing watershed models. In this study, we used multi-reservoir model coupled with the Hydrological Simulation Program-Fortran (HSPF) to estimate the effect of the recycled irrigation on the stream water quality. The study area was the Gwangok stream watershed, a subwatershed of Gyeseong stream watershed in Changnyeong county, Gyeongsangnam-do. The HSPF model was built, calibrated, and used to produce time series data of flow and water quality, which were used as hypothetical observation data to calibrate the multi-reservoir model. The calibrated multi-reservoir model was used for simulating the recycled irrigation. In the multi-reservoir model, the Gwangok watershed consisted of two subsystems, irrigation and the Gwangok stream, and the reactions (plant uptake, adsorption, desorption, and decay) within each subsystem, and fluxes of water and materials between the subsystems, were modeled. Using the developed model, three scenarios with different combinations of the operating conditions of the recycled irrigation were evaluated for their effects on the stream water quality.

Observation of Methane Flux in Rice Paddies Using a Portable Gas Analyzer and an Automatic Opening/Closing Chamber (휴대용 기체분석기와 자동 개폐 챔버를 활용한 벼논에서의 메탄 플럭스 관측)

  • Sung-Won Choi;Minseok Kang;Jongho Kim;Seungwon Sohn;Sungsik Cho;Juhan Park
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.25 no.4
    • /
    • pp.436-445
    • /
    • 2023
  • Methane (CH4) emissions from rice paddies are mainly observed using the closed chamber method or the eddy covariance method. In this study, a new observation technique combining a portable gas analyzer (Model LI-7810, LI-COR, Inc., USA) and an automatic opening/closing chamber (Model Smart Chamber, LI-COR, Inc., USA) was introduced based on the strengths and weaknesses of the existing measurement methods. A cylindrical collar was manufactured according to the maximum growth height of rice and used as an auxiliary measurement tool. All types of measured data can be monitored in real time, and CH4 flux is also calculated simultaneously during the measurement. After the measurement is completed, all the related data can be checked using the software called 'SoilFluxPro'. The biggest advantage of the new observation technique is that time-series changes in greenhouse gas concentrations can be immediately confirmed in the field. It can also be applied to small areas with various treatment conditions, and it is simpler to use and requires less effort for installation and maintenance than the eddy covariance system. However, there are also disadvantages in that the observation system is still expensive, requires specialized knowledge to operate, and requires a lot of manpower to install multiple collars in various observation areas and travel around them to take measurements. It is expected that the new observation technique can make a significant contribution to understanding the CH4 emission pathways from rice paddies and quantifying the emissions from those pathways.

Satellite-Based Cabbage and Radish Yield Prediction Using Deep Learning in Kangwon-do (딥러닝을 활용한 위성영상 기반의 강원도 지역의 배추와 무 수확량 예측)

  • Hyebin Park;Yejin Lee;Seonyoung Park
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.5_3
    • /
    • pp.1031-1042
    • /
    • 2023
  • In this study, a deep learning model was developed to predict the yield of cabbage and radish, one of the five major supply and demand management vegetables, using satellite images of Landsat 8. To predict the yield of cabbage and radish in Gangwon-do from 2015 to 2020, satellite images from June to September, the growing period of cabbage and radish, were used. Normalized difference vegetation index, enhanced vegetation index, lead area index, and land surface temperature were employed in this study as input data for the yield model. Crop yields can be effectively predicted using satellite images because satellites collect continuous spatiotemporal data on the global environment. Based on the model developed previous study, a model designed for input data was proposed in this study. Using time series satellite images, convolutional neural network, a deep learning model, was used to predict crop yield. Landsat 8 provides images every 16 days, but it is difficult to acquire images especially in summer due to the influence of weather such as clouds. As a result, yield prediction was conducted by splitting June to July into one part and August to September into two. Yield prediction was performed using a machine learning approach and reference models , and modeling performance was compared. The model's performance and early predictability were assessed using year-by-year cross-validation and early prediction. The findings of this study could be applied as basic studies to predict the yield of field crops in Korea.

Interpretation of Microscale Behaviors and Precision Measurement Monitoring for the Five-story and Seven-story Stone Pagodas from Cheongnyangsaji Temple Site in Gongju, Korea (공주 청량사지 오층석탑 및 칠층석탑의 정밀 계측모니터링과 미세거동 해석)

  • LEE Jeongeun;PARK Seok Tae;LEE Chan Hee
    • Korean Journal of Heritage: History & Science
    • /
    • v.56 no.4
    • /
    • pp.132-158
    • /
    • 2023
  • The five-story and seven-story stone pagodas at Cheongnyangsaji temple site in Gongju are located under the Sambulbong peak of Gyeryongsan mountain, and are known to have been built of the middle in Goryeo dynasty. As the two pagodas in which two types of Baekje stone pagoda coexist in one era, their historical and academic value are recognized. The seven-story pagoda was overturned by robbery in 1944, and as a result, the five-story pagoda was tilted. Although the two pagodas were restored in 1961, structural instability was continuously raised. In this study, measurement data accumulated from May 2021 to March 2022, and seasonal characteristics were reviewed, and the micro behavior of pagodas were analyzed according to temperature and precipitation during the same period. As a result, the micro thermoelastic behavior was repeated according to the daily temperature change in all sensors, and both the slope and the displacement showed microscale behavior. In the inclinometer, moisture containing the surface and inside of the stones repeated expansion and contraction due to temperature change, showing the micro movements. In particular, the upper part of the five-story pagoda moved up to 3.89° to the northwest, and the seven-story pagoda tilted up to 0.078° to the northeast. The maximum displacements were recorded as 0.127 and 0.149 mm in the five-story and the seven-story pagoda, respectively. These values tended to return to the original position at the end of the measurement, but did not recover completely, indicating a state requiring precise monitoring. The result obtained through the study can be used as basic data for the stable conservation of the two stone pagodas. Based on the behavioral characteristics considering various environmental factors should be analyzed, and the preventive conservation through the maintenance of measurement system built this time should be continued.

Introduction and Evaluation of the Production Method for Chlorophyll-a Using Merging of GOCI-II and Polar Orbit Satellite Data (GOCI-II 및 극궤도 위성 자료를 병합한 Chlorophyll-a 산출물 생산방법 소개 및 활용 가능성 평가)

  • Hye-Kyeong Shin;Jae Yeop Kwon;Pyeong Joong Kim;Tae-Ho Kim
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_1
    • /
    • pp.1255-1272
    • /
    • 2023
  • Satellite-based chlorophyll-a concentration, produced as a long-term time series, is crucial for global climate change research. The production of data without gaps through the merging of time-synthesized or multi-satellite data is essential. However, studies related to satellite-based chlorophyll-a concentration in the waters around the Korean Peninsula have mainly focused on evaluating seasonal characteristics or proposing algorithms suitable for research areas using a single ocean color sensor. In this study, a merging dataset of remote sensing reflectance from the geostationary sensor GOCI-II and polar-orbiting sensors (MODIS, VIIRS, OLCI) was utilized to achieve high spatial coverage of chlorophyll-a concentration in the waters around the Korean Peninsula. The spatial coverage in the results of this study increased by approximately 30% compared to polar-orbiting sensor data, effectively compensating for gaps caused by clouds. Additionally, we aimed to quantitatively assess accuracy through comparison with global chlorophyll-a composite data provided by Ocean Colour Climate Change Initiative (OC-CCI) and GlobColour, along with in-situ observation data. However, due to the limited number of in-situ observation data, we could not provide statistically significant results. Nevertheless, we observed a tendency for underestimation compared to global data. Furthermore, for the evaluation of practical applications in response to marine disasters such as red tides, we qualitatively compared our results with a case of a red tide in the East Sea in 2013. The results showed similarities to OC-CCI rather than standalone geostationary sensor results. Through this study, we plan to use the generated data for future research in artificial intelligence models for prediction and anomaly utilization. It is anticipated that the results will be beneficial for monitoring chlorophyll-a events in the coastal waters around Korea.

Development of Cloud Detection Method Considering Radiometric Characteristics of Satellite Imagery (위성영상의 방사적 특성을 고려한 구름 탐지 방법 개발)

  • Won-Woo Seo;Hongki Kang;Wansang Yoon;Pyung-Chae Lim;Sooahm Rhee;Taejung Kim
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_1
    • /
    • pp.1211-1224
    • /
    • 2023
  • Clouds cause many difficult problems in observing land surface phenomena using optical satellites, such as national land observation, disaster response, and change detection. In addition, the presence of clouds affects not only the image processing stage but also the final data quality, so it is necessary to identify and remove them. Therefore, in this study, we developed a new cloud detection technique that automatically performs a series of processes to search and extract the pixels closest to the spectral pattern of clouds in satellite images, select the optimal threshold, and produce a cloud mask based on the threshold. The cloud detection technique largely consists of three steps. In the first step, the process of converting the Digital Number (DN) unit image into top-of-atmosphere reflectance units was performed. In the second step, preprocessing such as Hue-Value-Saturation (HSV) transformation, triangle thresholding, and maximum likelihood classification was applied using the top of the atmosphere reflectance image, and the threshold for generating the initial cloud mask was determined for each image. In the third post-processing step, the noise included in the initial cloud mask created was removed and the cloud boundaries and interior were improved. As experimental data for cloud detection, CAS500-1 L2G images acquired in the Korean Peninsula from April to November, which show the diversity of spatial and seasonal distribution of clouds, were used. To verify the performance of the proposed method, the results generated by a simple thresholding method were compared. As a result of the experiment, compared to the existing method, the proposed method was able to detect clouds more accurately by considering the radiometric characteristics of each image through the preprocessing process. In addition, the results showed that the influence of bright objects (panel roofs, concrete roads, sand, etc.) other than cloud objects was minimized. The proposed method showed more than 30% improved results(F1-score) compared to the existing method but showed limitations in certain images containing snow.

Evaluation of Applicability of Sea Ice Monitoring Using Random Forest Model Based on GOCI-II Images: A Study of Liaodong Bay 2021-2022 (GOCI-II 영상 기반 Random Forest 모델을 이용한 해빙 모니터링 적용 가능성 평가: 2021-2022년 랴오둥만을 대상으로)

  • Jinyeong Kim;Soyeong Jang;Jaeyeop Kwon;Tae-Ho Kim
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_2
    • /
    • pp.1651-1669
    • /
    • 2023
  • Sea ice currently covers approximately 7% of the world's ocean area, primarily concentrated in polar and high-altitude regions, subject to seasonal and annual variations. It is very important to analyze the area and type classification of sea ice through time series monitoring because sea ice is formed in various types on a large spatial scale, and oil and gas exploration and other marine activities are rapidly increasing. Currently, research on the type and area of sea ice is being conducted based on high-resolution satellite images and field measurement data, but there is a limit to sea ice monitoring by acquiring field measurement data. High-resolution optical satellite images can visually detect and identify types of sea ice in a wide range and can compensate for gaps in sea ice monitoring using Geostationary Ocean Color Imager-II (GOCI-II), an ocean satellite with short time resolution. This study tried to find out the possibility of utilizing sea ice monitoring by training a rule-based machine learning model based on learning data produced using high-resolution optical satellite images and performing detection on GOCI-II images. Learning materials were extracted from Liaodong Bay in the Bohai Sea from 2021 to 2022, and a Random Forest (RF) model using GOCI-II was constructed to compare qualitative and quantitative with sea ice areas obtained from existing normalized difference snow index (NDSI) based and high-resolution satellite images. Unlike NDSI index-based results, which underestimated the sea ice area, this study detected relatively detailed sea ice areas and confirmed that sea ice can be classified by type, enabling sea ice monitoring. If the accuracy of the detection model is improved through the construction of continuous learning materials and influencing factors on sea ice formation in the future, it is expected that it can be used in the field of sea ice monitoring in high-altitude ocean areas.

Constructing a Conceptual Framework of Smart Ageing Bridging Sustainability and Demographic Transformation (인구감소 시대와 초고령 사회의 지속가능한 삶으로서 스마트 에이징의 개념과 모형에 관한 탐색적 연구)

  • Hyunjeong Lee;JungHo Park
    • Land and Housing Review
    • /
    • v.14 no.4
    • /
    • pp.1-16
    • /
    • 2023
  • As population ageing and shrinking accompanied by dramatically expanded individual life expectancy and declining fertility rate is a global phenomenon, ageing becomes its broader perspective of ageing well embedded into sustained health and well-being, and also the fourth industrial revolution speeds up a more robust and inclusive view of smart ageing. While the latest paradigm of SA has gained considerable attention in the midst of sharply surging demand for health and social services and rapidly declining labor force, the definition has been widely and constantly discussed. This research is to constitute a conceptual framework of smart ageing (SA) from systematic literature review and the use of a series of secondary data and Geographical Information Systems(GIS), and to explore its components. The findings indicate that SA is considered to be an innovative approach to ensuring quality of life and protecting dignity, and identifies its constituents. Indeed, the construct of SA elaborates the multidimensional nature of independent living, encompassing three spheres - Aging in Place (AP), Well Aging (WA), and Active Ageing (AA). AP aims at maintaining independence and autonomy, entails safety, comfort, familiarity and emotional attachment, and it values social supports and services. WA assures physical, psycho-social and economic domains of well-being, and it concerns subjective happiness. AA focuses on both social engagement and economic participation. Moreover, the three constructs of SA are underpinned by specific elements (right to housing, income adequacy, health security, social care, and civic engagement) which are interrelated and interconnected.