• Title/Summary/Keyword: sequence-related amplified polymorphism

Search Result 31, Processing Time 0.026 seconds

Development of a Molecular Marker for Fruiting Body Pattern in Auricularia auricula-judae

  • Yao, Fang-Jie;Lu, Li-Xin;Wang, Peng;Fang, Ming;Zhang, You-Min;Chen, Ying;Zhang, Wei-Tong;Kong, Xiang-Hui;Lu, Jia;Honda, Yoichi
    • Mycobiology
    • /
    • v.46 no.1
    • /
    • pp.72-78
    • /
    • 2018
  • The fruiting body pattern is an important agronomic trait of the edible fungus Auricularia auricula-judae, and an important breeding target. There are two types of fruiting body pattern: the cluster type and the chrysanthemum type. We identified the fruiting body pattern of 26 test strains, and then constructed two different near-isogenic pools. Then, we developed sequence characterized amplified region (SCAR) molecular markers associated with the fruiting body pattern based on sequence-related amplified polymorphism (SRAP) markers. Ten different bands (189-522 bp) were amplified using 153 pairs of SRAP primers. The SCAR marker "SCL-18" consisted of a single 522-bp band amplified from the cluster-type strains, but not the chrysanthemum strains. This SCAR marker was closely associated with the cluster-type fruiting body trait of A. auricula-judae. These results lay the foundation for further research to locate and clone genes controlling the fruiting body pattern of A. auricula-judae.

CAPS Marker Linked to Tomato Hypocotyl Pigmentation

  • Kim, Hyoun-Joung;Lee, Heung-Ryul;Hyun, Ji-Young;Won, Dong-Chan;Hong, Dong-Oh;Harn, Chee-Hark
    • Horticultural Science & Technology
    • /
    • v.30 no.1
    • /
    • pp.56-63
    • /
    • 2012
  • Tomato hypocotyl can generally be one of two colors, purple or green. Genetically, this trait is controlled by a single dominant gene. Hypocotyl tissue specific color expression is one of many visible genetic marker sources used to select tomato progeny. However, the visible marker does not show a clear distinction between homozygous genotype and heterozygous genotype from the breeding lines. Therefore, to identify a hypocotyl pigmentation related marker, we screened DNA polymorphisms in thirteen tomato lines showing purple or green hypocotyls. The markers used for screening consisted of primer set information obtained from anthocyanin related genes, conserved ortholog set II (COS II) marker sets localized near anthocyanin related genes, and restriction fragment length polymorphism (RFLP) markers localized near COS II markers, which produce polymorphisms between purple and green tomatoes. One primer from a RFLP fragment resulted in a polymorphism on agarose gel electrophoresis. From the RFLP fragment, a cleaved amplified polymorphic sequence (CAPS) marker was developed to distinguish between purple and green hypocotyls. The genotypes of 135 $F_2$ individuals were analyzed using the CAPS marker, and among them, 132 individuals corresponded to the phenotypes of hypocotyl pigmentation.

Development of SCAR Markers for Korean Wheat Cultivars Identification

  • Son, Jae-Han;Kim, Kyeong-Hoon;Shin, Sanghyun;Choi, Induk;Kim, Hag-Sin;Cheong, Young-Keun;Lee, Choon-Ki;Lee, Sung-Il;Choi, Ji-Yeong;Park, Kwang-Geun;Kang, Chon-Sik
    • Plant Breeding and Biotechnology
    • /
    • v.2 no.3
    • /
    • pp.224-230
    • /
    • 2014
  • Amplified fragment length polymorphism (AFLP) is a molecular marker technique based on DNA and is extremely useful in detection of high polymorphism between closely related genotypes like Korean wheat cultivars. Six sequence characterized amplified regions (SCARs) have been developed from inter simple sequence repeat (ISSR) analysis which enabled the identification and differentiation of 13 Korean wheat cultivars from the other cultivars. We used six combinations of primer sets in our AFLP analysis for developing additional cultivar-specific markers in Korean wheat. Fifty-eight of the AFLP bands were isolated from EA-ACG/MA-CAC, EA-AGC/MA-CTG and EA-AGG/MA-CTA primer combinations. Of which 40 bands were selected to design SCAR primer pairs for Korean wheat cultivar identification. Three of 58 amplified primer pairs, KWSM006, KWSM007 and JkSP, enabled wheat cultivar identification. Consequently, 23 of 32 Korean wheat cultivars were classified by eight SCAR marker sets.

Identification of Korean Strawberry Cultivars using DNA markers (DNA 표지를 이용한 딸기 국내 육성 품종 판별)

  • Cho, Kang-Hee;Rho, Il Rae;Cho, Yong Seop;Park, Pue-Hee
    • Korean Journal of Breeding Science
    • /
    • v.40 no.4
    • /
    • pp.401-407
    • /
    • 2008
  • This study was conducted to develop the DNA markers for identification of the strawberry cultivars in Korea and Japan. We developed fifteen cleaved amplified polymorphic sequence (CAPS) markers based on the Fragaria gene sequences. Among them six CAPS markers showed polymorphism exclusively in one cultivar. Five CAPS markers (ANR-MspI, ANR-BamHI, ACO-HinfI, DFR-AseI, FGT-MspI) provided enough polymorphism to identify eight Korean strawberry cultivars except for 'Maehyang' and 'Sunhong'. To complement the fifteen CAPS markers, we selected another fifteen sequence-related amplified polymorphism (SRAP) and one of them, me1/em5_460bp marker, made it possible to discriminate between 'Maehyang' and 'Sunhong'. Therefore, application of the five CAPS markers and one SRAP marker were sufficient to identify the nineteen Korean and Japanese strawberry cultivars. These markers could be used practically for cultivar identification of Korean and Japanese strawberry.

Genetic Diversity and Morphological Variations of Goosegrass [Eleusine indica (L.) Gaertn] Ecotypes in Malaysia

  • Saidi, Nazreen;Kadir, Jugah;Hong, Lau Wei
    • Weed & Turfgrass Science
    • /
    • v.5 no.3
    • /
    • pp.144-154
    • /
    • 2016
  • Goosegrass [Eleusine indica (L.) Gaertn] has been a nuisance to growers in Malaysia due to its increased resistance to commercial herbicides, rapid growth and dissemination, and interference with agricultural practices. In the course of developing an apt integrated management to control goosegrass, more information of this weed is needed. The aim of this study was to look into variations among the goosegrass ecotypes sampled throughout Malaysia from the aspects of genotype and phenotype. Sequence-related amplified polymorphism (SRAP) markers were employed in investigating the genetic diversity and relationships among the 18 goosegrass ecotypes. Consequently, 5 primer combinations amplified 13 fragments with the polymorphism rate of 69.23%. At 74% similarity, the ecotypes were clustered into 6 groups. Phenotypic variability of the goosegrass ecotypes was assessed by observing their morphology, growth and seed traits. Goosegrass ecotypes were sorted into 3 major groups at the genetic distance (DIST) of 0.37. Concurrences of the evaluated genetic distance, ecotypes with the closest and most distant relationships were assembled together in Group I which showed high variation even among ecotypes in the same group. Results obtained thus implied high molecular and morphological variations of the goosegrass ecotypes in Malaysia.

Intraspecific variations of the Yam (Dioscorea alata L.) based on external morphology and DNA marker analysis

  • Chang, Kwang-Jin;Yoo, Ki-Oug;Park, Cheol-Ho;Lim, Hak-Tae;Michio Onjo;Park, Byoung-Jae
    • Plant Resources
    • /
    • v.3 no.3
    • /
    • pp.211-218
    • /
    • 2000
  • Intraspecific genetic relationship of 19 variation types of the Yam (Dioscorea alata) classified by their external morphological characteristics such as leaf and tuber shape were assessed by DNA using random and specific primer. Twenty two out of 113 primers (100 random[10-mer] primers, two 15 mer [M13 core sequence, and (GGAT)$_4$ sequence]) had been used in PCR-amplification. Only 12 primers, however, were success in DNA amplification in all of the analyzed plants, resulting in 93 randomly and specifically amplified DNA fragments. The analyzed taxa showed very high polymorphisms(69 bands, 71.0 %), allowing individual taxon to be identified based on DNA fingerprinting. Monomorphic bands among total amplified DNA bands of each primer was low under the 50%. Similarity indices between accessions were computed from PCR(polymerase chain reaction) data, and genetic relationships among intraspecific variations were closely related at the levels ranging from 0.66 to 0.90. These DNA data were not matched well with those of morphological characters since they were divided into two major groups at the similarity coefficient value of 0.70. Therefore, Grouping of species into variation types by mainly morphological charactistics was suggested unreasonable.

  • PDF

Inter simple sequence repeat (ISSR)-PCR based polymorphism of Agaricus bisporus strains and monokayon isolates (Inter simple sequence repeat (ISSR)-PCR에 의한 양송이버섯(Agaricus bisporus) 계통과 단핵균주의 다형성 분석)

  • Min, Kyong-Jin;Kong, Won-Sik;Kang, Hee-Wan
    • Journal of Mushroom
    • /
    • v.13 no.3
    • /
    • pp.175-180
    • /
    • 2015
  • Twenty Inter simple sequence repeat (ISSR) primers were used to assess genetic diversity of 64 Agaricus strains including 45 A. bisporus strains and other 19 Agaricus spp. ISSR primers, (GA)T, (AG)YC, (GA)C and (CTC) amplified PCR polymorphic bands between the Agaricus species or within A. bisporus strains. PCR polymorphic bands were inputted for UPGMA cluster analysis. The varieties, Saea, Saedo, Saejeong and Saeyeon that have recently been developed in Korea were involved in the same group with closely genetic relationship of coefficient similarity over 0.92, whereas, other Korean strains were genetically related to A. bisporus strains that were introduced from USA, Eroupe and Chinese. Furthermore, ISSR-PCR polymorphism could potentially be used to identify homokaryon isolates.

Analysis of Genetic Diversity and Identification of Domestic Bred Phalaenopsis Varieties Using SRAP and SSR Markers (SRAP과 SSR 마커를 이용한 국내 육성 팔레놉시스 품종의 유전적 다양성 분석과 품종판별)

  • Park, Pue Hee;Park, Yong-Jin;Kim, Mi Seon;Lee, Young Ran;Park, Pil Man;Lee, Dong Soo;Yae, Byeong Woo
    • Horticultural Science & Technology
    • /
    • v.31 no.3
    • /
    • pp.337-343
    • /
    • 2013
  • The aims of this study were to compare genetic distances among 14 Phalaenopsis varieties using simple sequence repeat (SSR) and sequence-related amplified polymorphism (SRAP) marker systems and to determine the discrimination using SSR. A total of 111 SSR primers and 30 SRAP combinations were initially screened. Twelve SSR primers and thirty SRAP combinations showed high polymorphism among the 14 Phalaenopsis varieties including domestic breeding varieties, conserved in National Institute of Horticultural & Herbal Science (NIHHS). The amplified DNA fragments were separated by denaturing acrylamide gels and detected by silver staining method. A total of 474 polymorphic bands, including 55 by SSRs and 419 by SRAPs, were identified and used for genetic diversity analysis. Polymorphic bands were scored for calculating a simple matching coefficient of genetic similarity and cluster analysis with multi-variate statistical package (MVSP) 3.1. Fourteen Phalaenopsis varieties were classified into three major groups at similarity coefficient value of 0.683 and 0.66 using SRAP and SSR, respectively. Also we could discriminate these domestic breeding Palaenopsis varieties using only SSR 20 and SSR 22. The results indicate that SSR analysis is effective for discrimination among Phalaenopsis varieties and SRAP is useful for genetic diversity when there is no sequence information. These studied SSR and SRAP markers will be useful tools for genotype identification, germplasm conservation and genetic relationship study in Phalaenopsis.

Genetic Diversity Studies and Identification of Molecular and Biochemical Markers Associated with Fusarium Wilt Resistance in Cultivated Faba Bean (Vicia faba)

  • Mahmoud, Amer F.;Abd El-Fatah, Bahaa E.S.
    • The Plant Pathology Journal
    • /
    • v.36 no.1
    • /
    • pp.11-28
    • /
    • 2020
  • Faba bean (Vicia faba L.) is one of the most important legume crops in Egypt. However, production of faba bean is affected by several diseases including fungal diseases. Fusarium wilt incited by Fusarium oxysporum Schlecht. was shown to be the most common wilt disease of faba bean in Assiut Governorate. Evaluation of 16 faba bean genotypes for the resistance to Fusarium wilt was carried out under greenhouse conditions. Three molecular marker systems (inter-simple sequence repeat [ISSR], sequence related amplified polymorphism [SRAP], and simple sequence repeat [SSR]) and a biochemical marker (protein profiles) were used to study the genetic diversity and detect molecular and biochemical markers associated with Fusarium wilt resistance in the tested genotypes. The results showed that certain genotypes of faba bean were resistant to Fusarium wilt, while most of the genotypes were highly susceptible. The percentage of disease severity ranged from 32.83% in Assiut-215 to 64.17% in Misr-3. The genotypes Assiut-215, Roomy-3, Marut-2, and Giza2 were the most resistant, and the genotypes Misr-3, Misr-1, Assiut-143, Giza-40, and Roomy-80 performed as highly susceptible. The genotypes Assiut-215 and Roomy-3 were considered as promising sources of the resistance to Fusarium wilt. SRAP markers showed higher polymorphism (82.53%) compared with SSR (76.85%), ISSR markers (62.24%), and protein profile (31.82%). Specific molecular and biochemical markers associated with Fusarium wilt resistance were identified. The dendrogram based on combined data of molecular and biochemical markers grouped the 16 faba bean genotypes into three clusters. Cluster I included resistant genotypes, cluster II comprised all moderate genotypes and cluster III contained highly susceptible genotypes.

Analysis of Genetic Diversity in Cymbidium Varieties Using SRAP (SRAP을 이용한 국내육성 심비디움 품종의 유전적 다양성 분석)

  • Park, Pue Hee;Kim, Mi Seon;Lee, Young Ran;Park, Pil Man;Lee, Dong Soo;Yae, Byeong Woo
    • Korean Journal of Breeding Science
    • /
    • v.43 no.5
    • /
    • pp.399-404
    • /
    • 2011
  • Genetic diversity among 28 Cymbidium varieties was evaluated by using a sequence-related amplified polymorphism (SRAP) marker system. The SRAP marker which was based on the open reading frames (ORFs) regions was developed primarily for Brassica species, but has been applied to various crops. A total of 30 SRAP primer combinations were initially screened. Twenty-eight SRAP primer combinations showed high polymorphism among the 28 Cymbidium varieties, which were consisted of breeding varieties and their parents in National Institute of Horticultural & Herbal Science (NIHHS). The amplified DNA fragments were separated by denaturing acrylamide gels and detected silver staining method. One hundred ninety six polymorphic bands (7 per primer) were generated and ranged from 0.3 to 1.0 kb in size. Polymorphic fragments were scored for calculating simple matching coefficient of genetic similarity and cluster analysis with multi-variate statistical package (MVSP) 3.1. The mean genetic similarity coefficient value was 0.588. The results showed that the correlation between $F_1$ varieties and their parents was high. These studied SRAP markers will be useful tools for genotype identification, germplasm conservation, genetic relationships in Cymbidium.