• Title/Summary/Keyword: sequence diversity

Search Result 844, Processing Time 0.029 seconds

Sequence Analysis of the 18S rDNA from Scallops Collected around Korean Sea (한국 주변해역 가리비로부터 분리한 18S rDNA의 염기서열 분석)

  • KIM Mi-Jung;JM Long-Guo;JIN Hyung-Joo;CHO Ji-Young;PARK Jung-Youn;CHANG Young Jin;HONG Yong-Ki
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.34 no.2
    • /
    • pp.137-144
    • /
    • 2001
  • Sequences of partial 18S rDNA have been analyzed to elucidate genetic diversity of scallops collected around Korean sea, The scallops used in genetic comparison are Argopecten irradians concentricus, Amusium japonicum japonicum, Chlamys farreri farreri, Chlamys (Swiftopecten) swifti and Patinopecten yessoensis. The 18S rDNA sequences were aligned by Clustalx program. Phylogenetic tree was drawn by Treecon program, The scallops were divided into two groups-the Family Pectinidae containing A. japonicum japonicum and the Family Propeamussiidae containing Argopecten, Chlamys and Patinopecten genera. The Family Propeamussiidae was also divided into the Supergenera Aequipecten containing A. irradians concentricus and Supergenera Chlamys containing C. farreri farreri, C. swifti and P. yessoensis. The species of C. swifti was closer to the P. yessoensis rather than C. farreri farreri in respect to nuclear 18S rDNA sequence.

  • PDF

Computational Approaches for Structural and Functional Genomics

  • Brenner, Steven-E.
    • Proceedings of the Korean Society for Bioinformatics Conference
    • /
    • 2000.11a
    • /
    • pp.17-20
    • /
    • 2000
  • Structural genomics aims to provide a good experimental structure or computational model of every tractable protein in a complete genome. Underlying this goal is the immense value of protein structure, especially in permitting recognition of distant evolutionary relationships for proteins whose sequence analysis has failed to find any significant homolog. A considerable fraction of the genes in all sequenced genomes have no known function, and structure determination provides a direct means of revealing homology that may be used to infer their putative molecular function. The solved structures will be similarly useful for elucidating the biochemical or biophysical role of proteins that have been previously ascribed only phenotypic functions. More generally, knowledge of an increasingly complete repertoire of protein structures will aid structure prediction methods, improve understanding of protein structure, and ultimately lend insight into molecular interactions and pathways. We use computational methods to select families whose structures cannot be predicted and which are likely to be amenable to experimental characterization. Methods to be employed included modern sequence analysis and clustering algorithms. A critical component is consultation of the presage database for structural genomics, which records the community's experimental work underway and computational predictions. The protein families are ranked according to several criteria including taxonomic diversity and known functional information. Individual proteins, often homologs from hyperthermophiles, are selected from these families as targets for structure determination. The solved structures are examined for structural similarity to other proteins of known structure. Homologous proteins in sequence databases are computationally modeled, to provide a resource of protein structure models complementing the experimentally solved protein structures.

  • PDF

Biodiversity of Bacterial lipase genes

  • Kim, Hyung-Kwoun
    • Proceedings of the Korean Society for Applied Microbiology Conference
    • /
    • 2001.06a
    • /
    • pp.163-164
    • /
    • 2001
  • A number of bacterial species produce extracellular lipases. Among them, many lipase genes have been cloned and sequenced. A comparison of primary sequences revealed only very limited sequence homology among them. Based on the sequence homologies and molecular sizes (Mr), bacterial lipases were classified into four discrete groups. From soil samples taken around Taejon, five different lipase-producing bacteria were isolated; Proteus vulgaris K80, Bacillus stearothermophilus Ll, B. pumilus B26, Staphylococcus haemolyticus L62, S. aureus B56. Nucleotide sequence analysis showed that Staphylococcus lipase genes (L62 and B56) composed of pre-pro-mature parts, Bacillus lipase genes (Ll and B26) pre-mature parts, and Proteus lipase gene (K80) mature part only. In addition, the molecular sizes of their mature parts were quite different from 19,000 to 45,000. Finally, they had very little homology (less than 20%) in their amino acid sequences. Judging from the above results, lipase K80 belonged to bacterial lipase Group I, lipase L1 and lipase B26 Group III, and lipase L62 and lipase B56 Group IV. This diversity in their primary structures was also reflected in their enzymatic properties; temperature effects, pH effects, substrate specificity, detergent effects, and so on.

  • PDF

Complete Chloroplast Genome Sequence of Korean Endermic Species, Pseudostellaria longipedicellata

  • Kim, Yongsung;Heo, Kyeong-In;Lee, Sangtae;Park, Jongsun
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2018.04a
    • /
    • pp.40-40
    • /
    • 2018
  • Pseudostellaria Pax (Caryophyllaceae) is a small genus distributed in temperate region. It consists of 25 species presenting high diversity in Asia. Pseudostellaria longipedicellata S. Lee, K. Heo & S. C. Kim was first announced as new species in 2012. Morphological characters of P. longipedicellata are closely related to those of Psedusotellaria palibiniana and Psedusotellaria okmotoi. These are distinguished from P. longipedicellata by shorter pedicel and puberulent pedicels, respectively and by being distributed allopatically between P. longipedicellata and rest of species. The complete chloroplast genome of P. longipedicellata was successfully rescued from raw reads generated by HiSeq2000. Its total length is 149,626 bp consisting of four regions: large single copy (LSC) region (81,292 bp), small single copy (SSC) region (16,984bp), and inverted repeats (IRs; 25,765 bp per each). It contained 126 genes (81 coding DNA sequence (CDS), eight rRNAs, and 37 tRNAs); 18 genes (seven CDS, four rRNAs, and seven tRNAs) are duplicated in inverted repeat regions. The overall GC content of P. longipedicellata is 36.5% and in the LSC, SSC, and IR regions were 34.3%, 29.3%, and 42.4%, respectively. Based on phylogenetic analysis of chloroplast genomes of P. longipedicellata and relatives species presents clear phylogenetic positions of Pseudostellaria genus. This chloroplast genome will be an important sequence resources for further researches of Pseudostellaria genus.

  • PDF

Simple Sequence Repeat (SSR)-Based Gene Diversity in Burkholderia pseudomallei and Burkholderia mallei

  • Song, Han;Hwang, Junghyun;Myung, Jaehee;Seo, Hyoseok;Yi, Hyojeong;Sim, Hee-Sun;Kim, Bong-Su;Nierman, William C.;Kim, Heenam Stanley
    • Molecules and Cells
    • /
    • v.27 no.2
    • /
    • pp.237-241
    • /
    • 2009
  • Pathogens Burkholderia pseudomallei (Bp) and Burkholderia mallei (Bm) contain a large number (> 12,000) of Simple Sequence Repeats (SSRs). To study the extent to which these features have contributed to the diversification of genes, we have conducted comparative studies with nineteen genomes of these bacteria. We found 210 genes with characteristic types of SSR variations. SSRs with nonamer repeat units were the most abundant, followed by hexamers and trimers. Amino acids with smaller and nonpolar R-groups are preferred to be encoded by the variant SSRs, perhaps due to their minimal impacts to protein functionality. A majority of these genes appears to code for surface or secreted proteins that may directly interact with the host factors during pathogenesis or other environmental factors. There also are others that encode diverse functions in the cytoplasm, and this protein variability may reflect an extensive involvement of phase variation in survival and adaptation of these pathogens.

Genetic diversity and phylogenetic analysis of genus Paeonia based on nuclear ribosomal DNA ITS sequence

  • Sun, Yan-Lin;Hong, Soon-Kwan
    • Journal of Plant Biotechnology
    • /
    • v.38 no.3
    • /
    • pp.234-240
    • /
    • 2011
  • The genus Paeonia belongs to the family Paeoniaceae having significant medicinal and ornamental importance. The present investigation was undertaken with an aim to understand phylogenetic relationships of three Paeonia species (P. lactiflora, P. obovata, and P. suffruticosa) that are widely distributed in China, Korea, and Japan, using nuclear ribosomal DNA (nrDNA) internal transcribed spacer (ITS) sequence and to compare the phylogeny results with investigations reported earlier using existed sequences of the same species. The size variation obtained among sequenced nrDNA ITS region was narrow and ranged from 722 to 726 bp. The highest interspecific genetic distance (GD) was found between P. lactiflora and P. suffruticosa or P. obovata. The phylogram obtained using our nrDNA ITS sequences showed non-congruence with previous hypothesis of the phylogeny between section Paeonia and section Moutan of genus Paeonia. This result was supported by the phylogenetic relations showed in the phylogram constructed with existed sequences in NCBI. The present study suggested that P. obovata belonging to section Paeonia was phylogenetically closer to P. suffruticosa representing section Moutan of genus Paeonia than P. lactiflora belonging to section Paeonia. The main reason of the paraphyly of section Paeonia is thought to be nucleotide additivity directly caused by origin hybridization. This study provides more sequence sources of genus Paeonia, and will help for further studies in intraspecies population, and their phylogentic analysis and molecular evolution.

Draft Genome Sequence of Aeromonas caviae Isolated from a Newborn with Acute Haemorrhagic Gastroenteritis

  • Savita Jadhav;Ujjayni Saha;Kunal Dixit;Anjali Kher;Sourav Sen;Nitin Lingayat;Vivekanand Jadhav;Sunil Saroj
    • Microbiology and Biotechnology Letters
    • /
    • v.51 no.2
    • /
    • pp.217-221
    • /
    • 2023
  • Aeromonas spp., are Gram-negative rods that can cause infections in healthy and immunocompromised hosts. The clinical presentation of gastroenteritis varies from mild diarrhoea to shigella-like dysentery to severe cholera-like watery diarrhoea. Here, we report a case of acute hemorrhagic gastroenteritis in a newborn infant by Aeromonas caviae and its draft genome sequence. It is important to reduce the chance of incorrect isolate identification, which could lead to the exclusion of pathogenic Aeromonas spp., from routine laboratory identification in cases of diarrheal diseases. The genome sequence of A. caviae SVJ23 represents a significant step forward in understanding the diversity and pathogenesis, virulence, and antimicrobial resistance profile.

First Record of the Velvet Snail, Coriocella jayi (Littorinimorpha: Velutinidae) from Korea

  • Yucheol Lee;Damin Lee;Jina Park;Joong-Ki Park
    • Animal Systematics, Evolution and Diversity
    • /
    • v.40 no.2
    • /
    • pp.130-134
    • /
    • 2024
  • The family Velutinidae is found in various intertidal and subtidal habitats worldwide including Arctic and Antarctic seas. They are characterized by possessing a fragile shell that is partially or entirely covered by the mantle. Eight valid species of the genus Coriocella have been reported mostly in the Indo-West Pacific. Here we report Coriocella jayi Wellens, 1996 from Korean waters for the first time and describe details of their external morphology and radula characteristics using scanning electron microscopy, and provide the mtDNA cox1 sequence as a DNA barcode sequence information. This species is distinguished from other congeneric species by having six cylinder-shaped tubercular lobes of their dorsal part of mantle body and mantle color. Phylogenetic tree using the mtDNA cox1 sequence data shows that two Coriocella species (C. jayi and C. nigra) are grouped as their respective sister among Velutinidae species, and these relationships are strongly supported by 100% bootstrap value. Despite the morphological similarities, further investigation will be needed to confirm whether the African and Korean populations can be justified as the same species with a disconnected distribution range, or represent morphologically similar but two distinct species.

Inter Simple Sequence Repeats (ISSR) Marker Analysis of Genetic Diversity in Korean Phasianus colchicus karpowi and Genetic Relationships Among Subspecies of Phasianus spp. (Inter Simple Sequence Repeats (ISSR) 표지자를 이용한 한국꿩의 유전적 다양성 및 아종간의 유연관계 분석)

  • Yoon, Seong-Il
    • Korean Journal of Environmental Biology
    • /
    • v.26 no.2
    • /
    • pp.66-75
    • /
    • 2008
  • The level of genetic diversity and genetic relationships among Korean ring-necked pheasant (Phasianus colchicus karpowi) habitat and subspecies have been investigated based on Inter Simple Sequence Repeat (ISSR) markers. Wild and domesticated Korean ring-necked pheasant, hybrids between domesticated Korean ring-necked and foreign subspecies, and four foreign subspecies; Chinese ring-necked (P. c. torquatus), Melanistic mutant (P. c. mut. tenebrosus), XL White (P. c. mut) and Southern green (P. c. versicolor) were used for comparison. On the basis of the results of AMOV A, 94.08% of genetic diversity in Korean ring-necked was allocated among individuals within habitat differences. Estimate of $\Phi$st, which represents the degree of genetic differentiation among habitats was 5.9%. Based on the dendrogram reconstructed by UPGMA, Yangpyung habitat of the eight habitats turned out to be distinct from others habitat. Interestingly, domesticated Korean ring-necked and hybrid mixture showed closer genetic relationship with four foreign subspecies than Korean ring-necked. As a consequence of AMOVA, 96.63% of genetic diversity in four foreign subspecies was allocated among individuals within subspecies. Estimate of $\Phi$st representing the degree of genetic differentiation among subspecies was 3.4%, which was lower than that among habitats of Korean ring-necked. The lower level of genetic difference among four foreign subspecies showed that these subspecies were genetically closer even though they were morphologically classified into four different subspecies. When seven habitats of Korean ring-necked pheasant and four foreign subspecies were divided into Korean and Foreign Pheasant Groups, respectively, more than 17% of genetic diversity was allocated between groups (about 4% among habitats/subspecies within groups). This observation implied that Korean ring-necked pheasant is genetically quite different from four foreign subspecies. On the basis of cluster analysis, three foreign subspecies (Chinese ring-necked pheasant, Melanistic mutant pheasant, and XL White pheasant) formed a distinct group with domesticated Korean ring-necked pheasant and hybrid mixture at 98% confidence interval.