• Title/Summary/Keyword: sepiapterin reductase

Search Result 3, Processing Time 0.018 seconds

Biosynthesis of Tetrahydrobiopterin in an Aquatic Fungus, Allomyces macrogynus (물곰팡이 Allomyces macrogynus에서 Tetrahydrobiopterin의 생합성)

  • Lee, Soo Woong;Park, Young Shik
    • Korean Journal of Microbiology
    • /
    • v.34 no.4
    • /
    • pp.243-247
    • /
    • 1998
  • Comparative analyses of intracellular biopterin contents and its biosynthetic enzymes were performed in Allomyces macrogynus. Biopterin content in fresh weight was 14-fold higher in mycelium than in zoospore. Enzyme activities of GTP cyclohydrolase I and 6-pyruvoyltetrahydropterin synthase in ammonium sulfate fractions were approximately 2-fold higher in mycelium. On the other hand, sepiapterin reductase (SR) activity was 10 fold higher in zoospore. Northern blot assay also demonstrated that SR transcript was abundant in zoospore. These results suggest a possible involvement of tetrahydrobiopterin in cellular differentiation of Allomyces macrogyllus as well as provide an experimental basis to elucidate the physiological function of SR in this organism.

  • PDF

Alterations in dopamine and glutamate neurotransmission in tetrahydrobiopterin deficient spr-/- mice: relevance to schizophrenia

  • Choi, Yong-Kee;Tarazi, Frank I.
    • BMB Reports
    • /
    • v.43 no.9
    • /
    • pp.593-598
    • /
    • 2010
  • Tetrahydrobiopterin ($BH_4$) is a pivotal cofactor for enzymes responsible for the synthesis and release of monoamine neurotransmitters including dopamine and serotonin as well as the release of glutamate. Deficiencies in $BH_4$ levels and reduced activities of $BH_4$-associated enzymes have been recently reported in patients with schizophrenia. Accordingly, it is possible that abnormalities in the biochemical cascades regulated by $BH_4$ may alter DA, 5-HT and Glu neurotransmission, and consequently contribute to the pathophysiology of different neuropsychiatric diseases including schizophrenia. The development of a novel strain of mutant mice that is deficient in $BH_4$ by knocking out the expression of a functional sepiapterin reductase gene (spr -/-) has added new insights into the potential role of $BH_4$ in the pathophysiology and improved treatment of schizophrenia.