• 제목/요약/키워드: separate model

검색결과 863건 처리시간 0.025초

나노결정 재료의 상혼합모델과 유한요소법을 결합한 멀티스케일 모델링 (Multi-Scale Modelling of a Phase Mixture Model and the Finite Element Method for Nanocrystalline Materials)

  • 윤승채;서민홍;김형섭
    • 소성∙가공
    • /
    • 제13권2호
    • /
    • pp.174-179
    • /
    • 2004
  • The effect of grain refinement on the plastic deformation behaviour of nanocrystalline metallic materials is investigated. A phase mixture model in which a single phase material is considered as an effectively two-phase one is discussed. A distinctive feature of the model is that grain boundaries are treated as a separate phase deforming by a diffusion mechanism. For the grain interior phase two concurrent mechanisms are considered: dislocation glide and mass transfer by diffusion. The proposed constitutive model was implemented into a finite element code (DEFORM) using a semicoupled approach. The finite element method was applied to simulating room temperature tensile deformation of Cu down to the nanoscale grain size in order to investigate the pre- and post-necking behaviour.

모델축소를 이용한 고차계 적분공정의 안정한 PID 동조 (Stable PID Tuning for High-order Integrating Processes using Model Reduction Method)

  • 이원혁;황형수
    • 전기학회논문지
    • /
    • 제56권11호
    • /
    • pp.2010-2016
    • /
    • 2007
  • PID control is windely used to control stable processes, However, its application to integrating processes is less common. In this paper, we proposed a stable PID controller tuning method for integrating processes with time delay using model reduction method. For proposed model reduction method, it disconnect an integrating factor from integrating processes and reduces separate process using reduction method. and it connect an integrating factor to reduced model. We can obtain stable integrating processes using P controller in inner feedback loop and PID tuning is then used to cancel the pole of the feedback loop. This guarantees both robustness and performance. Simulation examples are given to show the good performance of the proposed tuning method comparing with other methods.

MODELING AND PI CONTROL OF DIESEL APU FOR SERIES HYBRID ELECTRIC VEHICLES

  • HE B.;OUYANG M.;LU L.
    • International Journal of Automotive Technology
    • /
    • 제7권1호
    • /
    • pp.91-99
    • /
    • 2006
  • The diesel Auxiliary Power Unit (APU) for vehicle applications is a complex nonlinear system. For the purpose of this paper presents a dynamic average model of the whole system in an entirely physical way, which accounts for the non-ideal behavior of the diode rectifier, the nonlinear phenomena of generator-rectifier set in an elegant way, and also the dynamics of the dc load and diesel engine. Simulation results show the accuracy of the model. Based on the average model, a simple PI control scheme is proposed for the multivariable system, which includes the steps of model linearization, separate PI controller design with robust tuning rules, stability verification of the overall system by considering it as an uncertain one. Finally it is tested on a detailed switching model and good performances are shown for both set-point following and disturbance rejection.

A mesoscale model for concrete to simulate mechanical failure

  • Unger, Jorg F.;Eckardt, Stefan;Konke, Carsten
    • Computers and Concrete
    • /
    • 제8권4호
    • /
    • pp.401-423
    • /
    • 2011
  • In this paper, a mesoscale model of concrete is presented, which considers particles, matrix material and the interfacial transition zone (ITZ) as separate constituents. Particles are represented as ellipsoides, generated according to a prescribed grading curve and placed randomly into the specimen. In this context, an efficient separation procedure is used. The nonlinear behavior is simulated with a cohesive interface model for the ITZ and a combined damage/plasticity model for the matrix material. The mesoscale model is used to simulate a compression and a tensile test. Furthermore, the influence of the particle distribution on the loaddisplacement curve is investigated.

구조동특성해석을 위한 ARMAX 모형의 식별과 선형추정 알고리즘 (Identification of ARMAX Model and Linear Estimation Algorithm for Structural Dynamic Characteristics Analysis)

  • 최의중;이상조
    • 한국정밀공학회지
    • /
    • 제16권7호
    • /
    • pp.178-187
    • /
    • 1999
  • In order to identify a transfer function model with noise, penalty function method has been widely used. In this method, estimation process for possible model parameters from low to higher order proceeds the model identification process. In this study, based on linear estimation method, a new approach unifying the estimation and the identification of ARMAX model is proposed. For the parameter estimation of a transfer function model with noise, linear estimation method by noise separation is suggested instead of nonlinear estimation method. The feasibility of the proposed model identification and estimation method is verified through simulations, namely by applying the method to time series model. In the case of time series model with noise, the proposed method successfully identifies the transfer function model with noise without going through model parameter identification process in advance. A new algorithm effectively achieving model identification and parameter estimation in unified frame has been proposed. This approach is different from the conventional method used for identification of ARMAX model which needs separate parameter estimation and model identification processes. The consistency and the accuracy of the proposed method has been verified through simulations.

  • PDF

저속충격을 받는 적층복합재료 평판의 미시구조를 고려한 interlaminar stress 거동 연구 (Interlaminar stress behavior of laminated composite plates under Low velocity Impact)

  • 지국현;김승조
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2005년도 춘계학술발표대회 논문집
    • /
    • pp.249-252
    • /
    • 2005
  • Prediction of damage caused by low-velocity impact in laminated composite plate is an important problem faced by designers using composites. Not only the inplane stresses but also the interlaminar normal and shear stresses playa role in estimating the damage caused. The work reported here is an effort in getting better predictions of damage in composite plate using DNS approach. In the DNS model, we discretize the composite plates through separate modeling of fiber and matrix for the local microscopic analysis. Through comparison with the homogenized model. In the view of microscopic mechanics with DNS model, interlaminar stress behaviors in the inside of composite materials is investigated and compared with the results of the homogenized model which has been used in the conventional approach of impact analysis.

  • PDF

포화된 사질토에서 비배수 공극수압거동에 대한 탄성해석모델의 개발 (Elastic Modeling for the Behavior of Undrained Pore Water Pressure in Saturated Sand)

  • 임성훈
    • 한국농공학회논문집
    • /
    • 제47권5호
    • /
    • pp.43-49
    • /
    • 2005
  • In this study. it was suggested that the elastic model to analyze the behavior of pore water pressure in saturated sand specimen on the condition of non-drainage. The model based on the experiments which were performed for the relationships between the pore water pressure and the grain size of specimen, and effective stress, respectively. The suggested model embodied the pore water and soil grain as separate elastic springs of different stiffness. The springs were joined parallel and the axial strains were restricted to the same deformation. The suggested model was well consistent with the experiments.

균열 및 부착슬립효과를 고려한 철근콘크리트 구조물의 비선형 유한요소해석 (Nonlinear Finite Element Analysis of Reinforced Concrete Structures Considering the Crack and Bond-Slip Effects)

  • 곽효경
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1992년도 봄 학술발표회 논문집
    • /
    • pp.65-70
    • /
    • 1992
  • This study deals with the finite element analysis of the monotonic behavior of reinforced concrete beams and beam-column joint subassemblages. It is assumed that the behavior of these members can be discribed by a plane stress field. Concrete and reinforcing steel are represented by separate material models which are combined together with a model of the interaction between reinforcing bar and concrete through bond-slip to discribe the behavior of the composite reinforced concrete material. To discribe the concrete behavior, a nonlinear orthotropic model is adopted and the crack is discribed by a system of orthogonal cracks, which are rotating as the principal strain directions are changed. A smeared finite element model based on the fracture mechanics principles are used to overcome the numerical defect according to the finite element mesh size. Finally, correlation studies between analytical and experimental results and several parameter studies are conducted with the objective to estabilish the validity of the proposed model and identify the significance of various effects on the local and global response of reinforced concrete members.

  • PDF

고 출력 진행파 회전형 초음파 모터의 설계 (Design of high power traveling wave rotary type ultrasonic motor)

  • 오진헌;임기조
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2010년도 하계학술대회 논문집
    • /
    • pp.321-321
    • /
    • 2010
  • In this paper, we propose a novel type shaft-less ring type ultrasonic motor. A traveling wave rotary type ultrasonic motor is selected as a base model. The newly designed stator has two piezoelectric ceramic rings which are bonded in sandwich shape as traveling wave generator. So, we can expect to produce higher torque. The proposed model has the rotor structure that coupled with the stator provokes the pressure, this model do not install the separate plate any spring device. We used the finite element method to verify the operation principle and to compute the vibration mode of proposed model.

  • PDF

NUMERICAL ANALYSIS OF AN ARC PLASMA IN A DC ELECTRIC FURNACE

  • Lee Yeon Won;Lee Jong Hoon
    • 한국가시화정보학회:학술대회논문집
    • /
    • 한국가시화정보학회 2004년도 추계학술대회 논문집
    • /
    • pp.30-33
    • /
    • 2004
  • In order to analyze the heat transfer phenomena in the plasma flames, a mathematical model describing heat and fluid How in an electric arc has been developed and used to predict heat transfer from the arc to the steel bath in a DC Electric Arc Furnace. The arc model takes the separate contributions to the heat transfer from each involved mechanism into account, i.e. radiation, convection and energy transported by electrons. The finite volume method and a SIMPLE algorithm are used for solving the governing MHD equations, i.e., conservation equations of mass, momentum, and energy together with the equations describing a standard $k-\varepsilon$ model for turbulence. The model predicts heat transfer for different currents and arc lengths. Finally these calculation results can be used as a useful insight into plasma phenomena of the industrial-scale electric arc furnace. from these results, it can be concluded that higher arc current and longer arc length give high heat transfer.

  • PDF