• Title/Summary/Keyword: separability

Search Result 154, Processing Time 0.03 seconds

A Novel Method of Shape Quantification using Multidimensional Scaling (다차원 척도법(MDS)을 사용한 새로운 형태 정량화 기법)

  • Park, Hyun-Jin;Yoon, Uei-Joong;Seo, Jong-Bum
    • Journal of Biomedical Engineering Research
    • /
    • v.31 no.2
    • /
    • pp.134-140
    • /
    • 2010
  • Readily available high resolution brain MRI scans allow detailed visualization of the brain structures. Researchers have focused on developing methods to quantify shape differences specific to diseased scans. We have developed a novel method to quantify shape information for a specific population based on Multidimensional scaling(MDS). MDS is a well known tool in statistics and here we apply this classical tool to quantify shape change. Distance measures are required in MDS which are computed from pair-wise image registrations of the training set. Registration step establishes spatial correspondence among scans so that they can be compared in the same spatial framework. One benefit of our method is that it is quite robust to errors in registrations. Applying our method to 13 brain MRI showed clear separation between normal and diseased (Cushing's syndrome). Intentionally perturbing the image registration results did not significantly affect the separability of two clusters. We have developed a novel method to quantify shape based on MDS, which is robust to image mis-registration.

Development of a Fusion Vegetation Index Using Full-PolSAR and Multispectral Data

  • Kim, Yong-Hyun;Oh, Jae-Hong;Kim, Yong-Il
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.33 no.6
    • /
    • pp.547-555
    • /
    • 2015
  • The vegetation index is a crucial parameter in many biophysical studies of vegetation, and is also a valuable content in ecological processes researching. The OVIs (Optical Vegetation Index) that of using multispectral and hyperspectral data have been widely investigated in the literature, while the RVI (Radar Vegetation Index) that of considering volume scattering measurement has been paid relatively little attention. Also, there was only some efforts have been put to fuse the OVI with the RVI as an integrated vegetation index. To address this issue, this paper presents a novel FVI (Fusion Vegetation Index) that uses multispectral and full-PolSAR (Polarimetric Synthetic Aperture Radar) data. By fusing a NDVI (Normalized Difference Vegetation Index) of RapidEye and an RVI of C-band Radarsat-2, we demonstrated that the proposed FVI has higher separability in different vegetation types than only with OVI and RVI. Also, the experimental results show that the proposed index not only has information on the vegetation greenness of the NDVI, but also has information on the canopy structure of the RVI. Based on this preliminary result, since the vegetation monitoring is more detailed, it could be possible in various application fields; this synergistic FVI will be further developed in the future.

Soft-Remote-Control System based on EMG Signals for the Intelligent Sweet Home

  • Song, Jae-Hoon;Han, Jeong-Su;Pak, Ji-Woo;Kim, Dae-Jin;Jung, Jin-Woo;Bien, Z. Zenn;Lee, He-Young
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1163-1168
    • /
    • 2005
  • This paper proposes a soft-remote-control (soft-remocon) system based on EMG signals for the Intelligent Sweet Home. The proposed system is applied to Intelligent Sweet Home which was developed to help the independence living of the elderly and physically handicapped individuals. The goal of proposed system is to control home-installed electronic devices such as TV, air-conditioner, curtain and lamp in Intelligent Sweet Home using EMG signals. Features such as VAR and DAMV having good separability performance are selected for pattern classification. FMMNN is adopted as a pattern classifier. Classification results are allowed to a developed remote control module and then corresponding infrared pulses can operate home-installed electronic devices. We concluded that EMG as an input interface for home-installed electronic devices in Intelligent Sweet Home.

  • PDF

SAR Image Processing Using SVD-Pseudo Spectrum Technique (SAR에 적용된 SVD-Pseudo Spectrum 기술)

  • Kim, Binhee;Kong, Seung-Hyun
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.3
    • /
    • pp.212-218
    • /
    • 2013
  • This paper presents an SVD(Singular Value Decomposition)-Pseudo Spectrum method for SAR (Synthetic Aperture Radar) imaging. The purpose of this work is to improve resolution and target separability of SAR images. This paper proposes SVD-Pseudo Spectrum method whose advantages are noise robustness, reduction of sidelobes and high resolution of spectral estimation. SVD-Pseudo Spectrum method uses Hankel Matrix of signal components and SVD (Singular Value Decomposition) method. In this paper, it is demonstrated that the SVD-Pseudo Spectrum method shows better performance than the matched filtering method and the conventional super-resolution based multiple signal classification (MUSIC) method in SAR image processing. The targets to be separated are modeled, and this modeled data is used to demonstrate the performance of algorithms.

Feature Extraction Method Using the Bhattacharyya Distance (Bhattacharyya distance 기반 특징 추출 기법)

  • Choi, Eui-Sun;Lee, Chul-Hee
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.37 no.6
    • /
    • pp.38-47
    • /
    • 2000
  • In pattern classification, the Bhattacharyya distance has been used as a class separability measure. Furthemore, it is recently reported that the Bhattacharyya distance can be used to estimate error of Gaussian ML classifier within 1-2% margin. In this paper, we propose a feature extraction method utilizing the Bhattacharyya distance. In the proposed method, we first predict the classification error with the error estimation equation based on the Bhauacharyya distance. Then we find the feature vector that minimizes the classification error using two search algorithms: sequential search and global search. Experimental reslts show that the proposed method compares favorably with conventional feature extraction methods. In addition, it is possible to determine how man, feature vectors arc needed for achieving the same classification accuracy as in the original space.

  • PDF

Recognition of Radar Emitter Signals Based on SVD and AF Main Ridge Slice

  • Guo, Qiang;Nan, Pulong;Zhang, Xiaoyu;Zhao, Yuning;Wan, Jian
    • Journal of Communications and Networks
    • /
    • v.17 no.5
    • /
    • pp.491-498
    • /
    • 2015
  • Recognition of radar emitter signals is one of core elements in radar reconnaissance systems. A novel method based on singular value decomposition (SVD) and the main ridge slice of ambiguity function (AF) is presented for attaining a higher correct recognition rate of radar emitter signals in case of low signal-to-noise ratio. This method calculates the AF of the sorted signal and ascertains the main ridge slice envelope. To improve the recognition performance, SVD is employed to eliminate the influence of noise on the main ridge slice envelope. The rotation angle and symmetric Holder coefficients of the main ridge slice envelope are extracted as the elements of the feature vector. And kernel fuzzy c-means clustering is adopted to analyze the feature vector and classify different types of radar signals. Simulation results indicate that the feature vector extracted by the proposed method has satisfactory aggregation within class, separability between classes, and stability. Compared to existing methods, the proposed feature recognition method can achieve a higher correct recognition rate.

The Doctrine of Separability and Kompetenz-Kompetenz under International Commercial Arbitration. (전자상거래분쟁에서 국제재판관할권의 논점)

  • 박종삼
    • Journal of Arbitration Studies
    • /
    • v.13 no.2
    • /
    • pp.235-262
    • /
    • 2004
  • A study on the international Jurisdiction to Application in Electronic Transaction Disputes The implementation of electronic commerce raises some new legal and institutional problem so it is necessary for us to prepare alternatives. As the development of electronic commerce is difficult without smooth settlement of dispute the pursue of smooth settlement of dispute is very important menu. while the most common method relating to the settlement of dispute is litigation. them relating to the litigation, the subject of jurisdiction and the subject of governing laws should be resolved above all. Further more in addition, the old act prior act was regarded as insufficient in that it lacked rules on international jurisdiction to adjudicate, or international adjudicatory jurisdiction, where as the expectation of the public was that the private international law should function as the basic law of the legal relational encompassing rules on international jurisdiction given the increase of It international disputes. for the move the private international law has also attracted more attention from the korean. Therefore, International jurisdiction to application concerned about electronic commerce should be prepared and the environment to keep electronic commerce secure and stable be guaranteed. And we should make plans to protect companies and consumers and should make efforts to expand electronic commerce infrastructure.

  • PDF

A Hill-Sliding Strategy for Initialization of Gaussian Clusters in the Multidimensional Space

  • Park, J.Kyoungyoon;Chen, Yung-H.;Simons, Daryl-B.;Miller, Lee-D.
    • Korean Journal of Remote Sensing
    • /
    • v.1 no.1
    • /
    • pp.5-27
    • /
    • 1985
  • A hill-sliding technique was devised to extract Gaussian clusters from the multivariate probability density estimates of sample data for the first step of iterative unsupervised classification. The underlying assumption in this approach was that each cluster possessed a unimodal normal distribution. The key idea was that a clustering function proposed could distinguish elements of a cluster under formation from the rest in the feature space. Initial clusters were extracted one by one according to the hill-sliding tactics. A dimensionless cluster compactness parameter was proposed as a universal measure of cluster goodness and used satisfactorily in test runs with Landsat multispectral scanner (MSS) data. The normalized divergence, defined by the cluster divergence divided by the entropy of the entire sample data, was utilized as a general separability measure between clusters. An overall clustering objective function was set forth in terms of cluster covariance matrices, from which the cluster compactness measure could be deduced. Minimal improvement of initial data partitioning was evaluated by this objective function in eliminating scattered sparse data points. The hill-sliding clustering technique developed herein has the potential applicability to decomposition of any multivariate mixture distribution into a number of unimodal distributions when an appropriate diatribution function to the data set is employed.

Two-stage Deep Learning Model with LSTM-based Autoencoder and CNN for Crop Classification Using Multi-temporal Remote Sensing Images

  • Kwak, Geun-Ho;Park, No-Wook
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.4
    • /
    • pp.719-731
    • /
    • 2021
  • This study proposes a two-stage hybrid classification model for crop classification using multi-temporal remote sensing images; the model combines feature embedding by using an autoencoder (AE) with a convolutional neural network (CNN) classifier to fully utilize features including informative temporal and spatial signatures. Long short-term memory (LSTM)-based AE (LAE) is fine-tuned using class label information to extract latent features that contain less noise and useful temporal signatures. The CNN classifier is then applied to effectively account for the spatial characteristics of the extracted latent features. A crop classification experiment with multi-temporal unmanned aerial vehicle images is conducted to illustrate the potential application of the proposed hybrid model. The classification performance of the proposed model is compared with various combinations of conventional deep learning models (CNN, LSTM, and convolutional LSTM) and different inputs (original multi-temporal images and features from stacked AE). From the crop classification experiment, the best classification accuracy was achieved by the proposed model that utilized the latent features by fine-tuned LAE as input for the CNN classifier. The latent features that contain useful temporal signatures and are less noisy could increase the class separability between crops with similar spectral signatures, thereby leading to superior classification accuracy. The experimental results demonstrate the importance of effective feature extraction and the potential of the proposed classification model for crop classification using multi-temporal remote sensing images.

Design of RMESH Parallel Algorithms for Median Filters (Median 필터를 위한 RMESH 병렬 알고리즘의 설계)

  • Jeon, Byeong-Moon;Jeong, Chang-Sung
    • The Transactions of the Korea Information Processing Society
    • /
    • v.5 no.11
    • /
    • pp.2845-2854
    • /
    • 1998
  • Median filter can be implemented in the binary domain based on threshold decomposition, stacking property, and linear separability. In this paper, we develop one-dimensional and two-dimensional parallel algorithms for the median filter on a reconfigurable mesh with buses(RMESH) which is suitable for VLSI implementation. And we evaluate their performance by comparing the time complexities of RMESH algorithms with those of algorithms on mesh-connected computer. When the length of M-valued 1-D signal is N and w is the window width, the RMESH algorithm is done in O(Mw) time and mesh algorithm is done in $O(Mw^2)$ time. Beside, when the size of M-valued 2-D image is $N{\times}N$ and the window size is $w{\times}w$, our algorithm on $N{\times}N$ RMESH can be computed in O(Mw) time which is a significant improvement over the $O(Mw^2)$ complexity on $N{\times}N$ mesh.

  • PDF